Nature's Timepiece: The Exotic World of Pulsars

Week One: Setting the Stage

Andrew McCann
EFI & KICP @ The University of Chicago
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass $1.4 - 2 \times M_{\text{sun}}$
- Highly magnetised with field strengths $10^8 - 10^{15}$ Gauss
- Diameter ~ 20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

PSR B0329+54
Period: 0.714 seconds [1.4 Hz]
What is a pulsar?

PSR B0329+54
Period: 0.714 seconds [1.4 Hz]
What is a pulsar?

PSR B1055-52
Period: 197ms [5 Hz]
What is a pulsar?

PSR B1055-52
Period: 197ms [5 Hz]
What is a pulsar?

Vela pulsar observed with the Parkes telescope in Australia

PSR B0833-45
Period: 89.3ms [11 Hz]
What is a pulsar?

PSR B0833-45
Period: 89.3ms [11 Hz]
What is a pulsar?

PSR J0437-4715
Period: 5.75ms [173 Hz]
What is a pulsar?

PSR J0437-4715
Period: 5.75ms [173 Hz]
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~ 10 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)

- Born in the aftermath of supernova explosion

- Rotating with periods lasting a few seconds to milliseconds

- Mass 1.4 – 2 times \(M_{\odot} \)

- Highly magnetised with field strengths \(10^8 - 10^{15} \) Gauss

- Diameter ~10 km (\(D_{\odot}\) is 1.4x10^6 km)

- Neutron star (big ball of neutrons)

PSR J1811-1926 [65ms] in the nebula from SN 386
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion

- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths $10^{8} - 10^{15}$ Gauss
- Diameter ~10 km (D_{sun} is 1.4×10^{6} km)
- Neutron star (big ball of neutrons)

PSR J1811-1926 [65ms] in the nebula from SN 386

PSR B2224+65 [0.68s] in the “Guitar” Nebula
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_\odot
- Highly magnetised with field strengths $10^8 - 10^{15}$ Gauss
- Diameter ~ 10 km ($D_\odot = 1.4 \times 10^6$ km)
- Neutron star (big ball of neutrons)

Crab pulsar [33ms] PSR B2224+65 [0.68s] in the "Guitar" Nebula

Next Week

PSR J1811-1926 [65ms] in the nebula from SN 386

PSR B2224+65 [0.68s] in the "Guitar" Nebula
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter \sim20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

At the equator, the sun does a full rotation every 24.5 days.
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter \sim20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

The diameter of the sun is \sim1.4 million km
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~ 20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

Take the core to be the inner 3%
(diameter of 40,000 km)
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-1015 Gauss
- Diameter ~ 20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

Conservation of angular momentum:

$$L = \frac{2}{5} M R^2 \Omega$$

As the star collapses:
- R of core shrinks from 2×10^4 km to 10 km
- R^2 shrinks from 4×10^8 km2 to 1×10^2 km2

R^2 shrinks by 6.5 orders of magnitude
Ω must increase by 6.5 orders of magnitude

Rotation of 1 per 25 days to once every 2 seconds
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

Conservation of angular momentum:

$$L = \frac{2}{5} M R^2 \Omega$$

As the star collapses:
- R of core shrinks from 2×10^4 km to 10 km
- R^2 shrinks from 4×10^8 km2 to 1×10^2 km2

R^2 shrinks by 6.5 orders of magnitude
Ω must increase by 6.5 orders of magnitude

Rotation of 1 per 25 days to once every 2 seconds
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass $1.4 - 2 \times M_{\text{sun}}$
- Highly magnetised with field strengths $10^8 - 10^{15}$ Gauss
- Diameter $\sim 20\text{ km}$ (D_{sun} is $1.4 \times 10^6\text{ km}$)
- Neutron star (big ball of neutrons)

Conservation of angular momentum:

$$L = \frac{2}{5} M R^2 \Omega$$

As the star collapses:
- R of core shrinks from $2 \times 10^4\text{ km}$ to 10 km
- R^2 shrinks from $4 \times 10^8\text{ km}^2$ to $1 \times 10^2\text{ km}^2$

R^2 shrinks by 6.5 orders of magnitude
Ω must increase by 6.5 orders of magnitude

Rotation of 1 per 25 days to once every 2 seconds

- Stellar vibration/oscillation modes are too much too slow
- Pulsars are seen to slow down consistent with loss of rotational energy
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass $1.4 - 2 \times M_{\text{sun}}$
- Highly magnetised with field strengths $10^8 - 10^{15}$ Gauss
- Diameter $\sim 20 \ \text{km} \ (D_{\text{sun}} \ \text{is} \ 1.4 \times 10^6 \ \text{km})$
- Neutron star (big ball of neutron...
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass $1.4 - 2 \times M_{\text{sun}}$
- Highly magnetised with field strengths $10^8 - 10^{15}$ Gauss
- Diameter ~ 20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutron...
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutron...
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutron...
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter \sim20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutron...
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{\odot}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~20 km (D_{\odot} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

Magnetic flux is

$$M_{\text{flux}} = B \cdot A = B \cdot (4\pi R^2)$$

B is the magnetic field strength and A is the surface area of the star, $A = 4\pi R^2$

We saw already, as the star collapses:

R^2 shrinks by 6.5 orders of magnitude

To conserve M_{flux}, B must increase by ~6.5 orders of magnitude

B grows from 3×10^5 Gauss in the core to 1×10^{12} Gauss
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~ 20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

- Material which falls on to a neutron star from a companion can undergo thermonuclear reaction leading to an x-ray burst
- Cyclotron resonance absorption lines in the x-ray spectra have been measured in several pulsars
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M\textsubscript{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~20 km (D_{sun} is 1.4x106 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-1015 Gauss
- Diameter ~20 km (D_{sun} is 1.4x106 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter \sim20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

- Material which falls on to a neutron star from a companion can undergo thermonuclear reaction leading to an x-ray burst
- Cyclotron resonance absorption lines in the x-ray spectra have been measured in several pulsars
- 30 keV indicates that the B field is $\sim10^{12}$ Gauss
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-1015 Gauss
- Diameter ~20 km (D_{sun} is 1.4x106 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion ✔
- Rotating with periods lasting a few seconds to milliseconds ✔✔
- Mass 1.4 – 2 times M_{sun} ✔
- Highly magnetised with field strengths 10^8-10^{15} Gauss ✔✔
- Diameter ~20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

Balance centrifugal and gravitational force:

$$\Omega^2 r = \frac{GM}{r^2}$$

$$P = \frac{2\pi}{\Omega}$$

$$r = 1.5 \times 10^3 \left(\frac{M}{M_{\text{sun}}} \right)^{1/3} P^{2/3} \text{ km}$$

- $M = 1.4 \ M_{\text{sun}}$
- $P = 1.395$ milliseconds (PSR J1748-2446ad)
- [716 Hz]

$\rightarrow r = 21 \text{ km}$

- If $r > 21$ km this object would fragment and fall apart
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths $10^8 - 10^{15}$ Gauss
- Diameter ~20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

Balance centrifugal and gravitational force

\[\Omega^2 r = \frac{GM}{r^2} \]

\[P = \frac{2\pi}{\Omega} \]

\[r = 1.5 \times 10^3 \left(\frac{M}{M_{\text{sun}}} \right)^{1/3} P^{2/3} \text{ km} \]

$M = 1.4 \ M_{\text{sun}}$

$P = 1.395$ milliseconds (PSR J1748-2446ad)

$\Omega^2 = \frac{GM}{r^2}$

\[\frac{P}{2\pi} = \sqrt{\frac{GM}{r^2}} \]

\[\frac{P^2}{4\pi^2} = \frac{GM}{r^3} \]

\[\frac{GM}{r^3} = \frac{4\pi^2}{P^2} \]

\[r = \sqrt[3]{\frac{GM}{\frac{4\pi^2}{P^2}}} \]

\[r = \left(\frac{GM}{\frac{4\pi^2}{P^2}} \right)^{1/3} \]

\[r = \left(\frac{1.4 \ M_{\text{sun}} \times 4\pi^2 \times 10^{46}}{1.395 \times 10^{-3} \text{ s}^2} \right)^{1/3} \]

\[r = 21 \text{ km} \]

- If $r > 21$ km this object would fragment and fall apart

Jason Hessels
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~ 20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

- As photons emerge from the deep gravitational well they are red-shifted
- In a handful of cases red-shifted Iron ionization lines have been measured.
- From these one can measure the Mass to Radius ratio. Putting in Mass = 1.4 M_{sun}

 \rightarrow Radius = 11.4 km
 \rightarrow Diameter = 22.8 Km
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass $1.4 - 2 \times M_{\text{sun}}$
- Highly magnetised with field strengths $10^8 - 10^{15}$ Gauss
- Diameter ~ 20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

- As photons emerge from the deep gravitational well they are red-shifted
- In a handful of cases red-shifted Iron ionization lines have been measured.
- From these one can measure the Mass to Radius ratio. Putting in Mass $= 1.4 M_{\text{sun}}$

 \rightarrow Radius $= 11.4$ km
 \rightarrow Diameter $= 22.8$ Km
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths $10^8 - 10^{15}$ Gauss
- Diameter ~ 20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8–10^{15} Gauss
- Diameter ~20 km (D_{sun} is 1.4x10^6 km)
- Neutron star (big ball of neutrons)

Discovery of the neutron in 1932 (Nobel Prize in 1935)

In addition, the new problem of developing a more detailed picture of the happenings in a super-nova now confronts us. With all reserve we advance the view that a super-nova represents the transition of an ordinary star into a neutron star, consisting mainly of neutrons. Such a star may possess a very small radius and an extremely high density. As neutrons
What is a pulsar?

- Observed as periodic source of pulsed emission (typically in radio)
- Born in the aftermath of supernova explosion
- Rotating with periods lasting a few seconds to milliseconds
- Mass 1.4 – 2 times M_{sun}
- Highly magnetised with field strengths 10^8-10^{15} Gauss
- Diameter ~20 km (D_{sun} is 1.4×10^6 km)
- Neutron star (big ball of neutrons)

Discovery of the neutron in 1932 (Nobel Prize in 1935)

Walter Baade

Fritz Zwicky

James Chadwick

COSMIC RAYS FROM SUPER-NOVAE

By W. Baade and F. Zwicky

Mount Wilson Observatory, Carnegie Institution of Washington
Fornia Institute of Technology, Pasadena

Communicated March 19, 1934

In addition, the new problem of developing a more detailed picture of the happenings in a super-nova now confronts us. With all reserve we advance the view that a super-nova represents the transition of an ordinary star into a neutron star, consisting mainly of neutrons. Such a star may possess a very small radius and an extremely high density. As neutrons
The Discovery of Pulsars - 1967

PhD student, Jocelyn Bell, from Belfast Northern Ireland and her adviser Tony Hewish built the “4-acre” array in Cambridge (completed July 1967).

- Comprised of 2048 dipole antennas
- Bell: “By the end of my PhD I could swing a sledgehammer.”
- Transit telescope used to study scintillation of radio galaxies

In August, Bell pointed out an anomalous fluctuating source which looked like terrestrial noise.
The Discovery of Pulsars - 1967

- Signal looked like RF-noise from a car motor or an electric fence.
- Hewish dismissed it as terrestrial interference.
- Bell diligently poured over all the readings and noticed the signal appeared about the same time every night (like an astronomical signal).
First Ever Recording of Pulsar (1967)

Centre trace shows pulsed nature of emission
The Discovery of Pulsars - 1967

• Hewish (In his 1974 Nobel Prize address):

“To my astonishment the readings fell in a regular pattern, to within the observational uncertainty of 0.1s, showing that the pulsed source kept time to better than 1 part in 10^6.”

“I could not believe that any natural source would radiate in this fashion and I immediately consulted astronomical colleagues at other observatories to inquire whether they had any equipment in operation which might possibly generate electrical interference at a sidereal time near 19h 19 m.”

“Having found no satisfactory terrestrial explanation for the pulses we now began to believe that they could only be generated by some source far beyond the solar system, and the short duration of each pulse suggested that the radiator could not be larger than a small planet. We had to face the possibility that the signals were, indeed, generated on a planet circling some distant star, and that they were artificial. I knew that timing measurements, if continued for a few weeks, would reveal any orbital motion of the source as a Doppler shift, and I felt compelled to maintain a curtain of silence until this result was known with some certainty. Without doubt, those weeks in December 1967 were the most exciting in my life.”
The Discovery of Pulsars - 1967

- They did find a Doppler shift modulation in the data – one entirely consistent with the Earth’s motion around the sun. That convinced Hewish and Bell that the signal was not made by extra terrestrials. They published their historic paper:
The Discovery of Pulsars - 1967

- They did find a Doppler shift modulation in the data – one entirely consistent with the Earth’s motion around the sun. That convinced Hewish and Bell that the signal was not made by extra terrestrials. They published their historic paper:

Observation of a Rapidly Pulsating Radio Source

by

A. HEWISH
S. J. BELL
J. D. H. PILKINGTON
P. F. SCOTT
R. A. COLLINS

Mullard Radio Astronomy Observatory,
Cavendish Laboratory,
University of Cambridge

Unusual signals from pulsating radio sources have been recorded at the Mullard Radio Astronomy Observatory. The radiation seems to come from local objects within the galaxy, and may be associated with oscillations of white dwarf or neutron stars.

NATURE, VOL. 217, FEBRUARY 24, 1968
The Discovery of Pulsars - 1967

• They did find a Doppler shift modulation in the data – one entirely consistent with the Earth's motion around the sun. That convinced Hewish and Bell that the signal was not made by extra terrestrials. They published their historic paper:

Observation of a Rapidly Pulsating Radio Source

by

A. HEWISH
S. J. BELL
J. D. H. PILKINGTON
P. F. SCOTT
R. A. COLLINS

Mullard Radio Astronomy Observatory,
Cavendish Laboratory,
University of Cambridge

Unusual signals from pulsating radio sources have been recorded at the Mullard Radio Astronomy Observatory. The radiation seems to come from local objects within the galaxy, and may be associated with oscillations of white dwarf or neutron stars.

NATURE, VOL. 217, FEBRUARY 24, 1968

• Shortly before they submitted their paper they discovered a second pulsar. Bell: “I switched on the high speed recorder and it came blip.... blip.... blip.... blip.... blip.... Clearly the same family, the same sort of stuff and that was great, that was really sweet. It finally scotched the little green men hypothesis cos it's highly unlikely there's two lots of little green men, opposite sides of the universe, both deciding to signal to a rather inconspicuous planet earth, at the same time, using a daft technique and a rather common place frequency. It has to be some new kind of star, not seen before, and that then cleared the way for us publishing, going public!”
The Discovery of Pulsars - 1967

- Anthony Hewish and Martin Ryle won the Nobel Prize in physics in 1975 - “for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars”.

- The exclusion of Bell from the prize has been a point of controversy.
Introduction to the series

- April 4th: Setting the Stage
- April 11th: From Death Comes New Life
- April 18th: How the Lighthouse Shines
- April 25th: Pulsars Meet Einstein
- May 2nd: Weirdos (RRATs, Giant Pulses, Magnetars and more)
- May 9th: The Gamma-ray Pulsar Revolution
- May 16th: What's Hot Right Now
- May 30th: Building a Gravitational Wave Observatory from Pulsars
- June 6th: Hunting for Gravitational Waves with LIGO