The First Four Months of Gravitational Wave Astronomy

Outline

I. Gravitational wave primer

II. Compact binary detection and characterization methods

III.Results from LIGO's first observing run

General Relativity

"Spacetime tells matter how to move; matter tells spacetime how to curve."

— John Wheeler

Gravitational Waves

$$h_{\mu\nu} = \frac{2G}{rc^4} \ddot{I}_{\mu\nu}(\omega, t)$$

Strain on spacetime.

Generated by time-varying quadrupole moment.

Propagate at speed of light.

Unimpeded by matter.

The GW Spectrum

Detecting Gravitational Waves

Waves stretch and squeeze spacetime as they pass.

Typical strains ($\Delta l/l$) ~ 10⁻²¹

credit: wikipedia

Detecting Gravitational Waves

Detecting Gravitational Waves

LIGO-Virgo Network

Hanford, WA

Pisa, Italy

Livingston, LA

Noise

Abbott et al. (2016): PRL 116, 131103

Gaussian and stationary on moderate time scales.

Nonstationary Noise

Antenna Beam Pattern

Omnidirectional Detectors

Most sensitive to sources above and below.

Single detectors have little directional accuracy.

LIGO Source Classes

- I. Continuous wave
 - Asymmetric neutron stars
- II. Burst
 - Core collapse supernovae
- III. Stochastic
 - Binary black hole background
- IV. Compact binary mergers

Compact Binaries

Binary Neutron Star

Black Hole-Neutron Star

Binary Black Hole

Compact Binary Mergers

credit: Simulating eXtreme Spacetimes (SXS) Project

Compact Binary Mergers

-0.76s

credit: Simulating eXtreme Spacetimes (SXS) Project

Matched Filtering

Matched Filtering

Matched Filtering

Compact Binary Search

Coincident gravitational wave

How often does noise look like this?

Instrumental Noise Events

false alarms: 0

Instrumental Noise Events

false alarms: 4

18

False Alarm Rate

September 14, 2015

2.87 BBHs in OI

Abbott et al. (2016): PRL 116, 061102

GWI509I4

Abbott et al. (2016): PRL 116, 241103

GWI5I226

False Alarm Rate

False Alarm Rate

Parameter Estimation

Bayesian Inference

 $p(\vec{\theta}|d) \propto p(\vec{\theta})p(d|\vec{\theta})$ Prior Likelihood Posterior

15 Model Parameters

Intrinsic	Extrinsic
Masses (2) Spins (6)	Location (2) Distance (1) Inclination (1) Orientation (2) Merger Time (1)

Localization

Localization

Black Hole Masses

Black Hole Spins

GWI509I4

LVT151012

GWI5I226

Black Hole Spins

prior

Black Hole Spins GWI50914

0° 0° 300 30 tilt 0.80.6 δ \hat{g} 0.40.2magnitude 00° $^{\circ}06$ 0.0 1200 0097 ger secondary primary spin spin 180° 180° Abbott et al. (2016): 32 PRL 116, 241102

BH spin not aligned and extremal

Black Hole Spins LVTI51012

Black Hole Spins

GWI5I226

PRL 116, 241103

At least one spinning BH

Signal Reconstructions

Abbott et al. (2016) PRL 116, 241102

Overlaps found to be $94 \pm 1\%$.

Consistent with a GW as described by general relativity.

Residual Test

Constraining Deviations from GR

merger fits to numerical simulations

Constraining Deviations from GR

inspiral-merger corrections

More to come...

~I BBH/month detected in OI

BBH merger rate: ~9 - 240 Gpc³yr⁻¹

Coming back online in November.

Summary

Confident detection of GWs from 2 binary black hole mergers.

> Binary black holes form and merge frequently.

Heavy (\gtrsim 30 M $_{\odot}$) BHs exist.

> Likely formed in low metallicity environment, with weak winds.

Not all BHs have extremal spin.

Not all BHs have no spin.

Signals are consistent with GR.

Many more BBHs to come...

Questions?