New Directions in Searching for the Dark Universe

Surjeet Rajendran, UC Berkeley

Dark Matter

A New Particle

Non gravitational interactions?

How do we detect them?

Weak effects. Need high precision

Precision Instruments

Impressive developments in the past two decades

Magnetic Field
$$\lesssim 10^{-16} \frac{T}{\sqrt{\text{Hz}}}$$

(SQUIDs, atomic magnetometers)

Accelerometers
$$\lesssim 10^{-13} \frac{g}{\sqrt{\text{Hz}}}$$
 (atom and optical interferometers)

Rapid technological advancements

Use to detect new physics?

The Dark Matter Landscape

Standard Model scale ~ 100 GeV

One Possibility: Same scale for Dark Matter? Weakly Interacting Massive Particles (WIMPs) Soon to hit solar neutrino floor

Other Generic Candidates: Axions, Massive Vector Bosons, Dark Blobs

How do we make progress?

Outline

- 1. Brief Theory Overview
- 2. Axion Detection with Nuclear Magnetic Resonance
- 3. Dark Photon Detection with Radios
- 4. Bosons with Accelerometers
- 5. Directional Detection of Dark Matter
- 6. Magnetic Bubble Chambers
- 7. Conclusions

Bosonic Dark Matter

Photons

$$\vec{E} = E_0 \cos(\omega t - \omega x)$$

Detect Photon by measuring time varying field

Dark Bosons

Early Universe: Misalignment Mechanism

$$a(t) \sim a_0 \cos{(m_a t)}$$

Spatially uniform, oscillating field

$$m_a^2 a_0^2 \sim \rho_{DM}$$

Today: Random Field

Correlation length $\sim I/(m_a v)$

Coherence Time $\sim 1/(m_a v^2)$ $\sim 1 \text{ s (MHz/m}_a)$

Detect effects of oscillating dark matter field

Resonance possible. $Q \sim 10^6$ (set by $v \sim 10^{-3}$)

What kind of Bosons?

Naturalness. Structure set by symmetries.

Axions or ultra weak coupling Many UV theories

Anomaly free Standard Model couplings

QCD

QCD

Axion

Spin

Higgs

Spin

E&M

Current

$$\left(\frac{a}{f_a}F\tilde{F}\right)$$

Current Searches

 $(m_a \sim GHz)$

This Talk

$$\left(\frac{a}{f_a}G\tilde{G}\right)$$
 $\left($

$$\left(rac{a}{f_a}G ilde{G}
ight) \;\; \left(rac{\partial_{\mu}a}{f_a}ar{N}\gamma^{\mu}\gamma_5N
ight) \; \left(g\phi H^2
ight)$$

Higgs Portal/ Relaxion

$$\left(\frac{F_{\mu\nu}^{'}}{f_a}\bar{N}\sigma^{\mu\nu}N\right) \left(\epsilon F^{'}F\right)\left(gA_{\mu}^{'}J_{B-L}^{\mu}\right)$$

Dipole

moment

$$\left(\epsilon\right)$$

Dark Matter $\implies a = a_0 \cos(m_a t)$

 $Hz \lesssim m_a \lesssim GHz$

Observable Effects

What can the dark matter wind do?

What can a classical field do?

Change Fundamental Constants

a/c effect, narrow bandwidth around dark matter mass

Cosmic Axion Spin Precession Experiment (CASPEr)

with

Dmitry Budker
Peter Graham
Micah Ledbetter
Alex Sushkov

PRX 4 (2014) arXiv: 1306.6089

PRD 88 (2013) arXiv: 1306.6088

PRD 84 (2011) arXiv: 1101.2691

CASPEr: Axion Effects on Spin

General Axions

QCD Axion

Measure Spin Rotation, detect Axion

 $H_N \supset \frac{a}{f_a} \vec{v_a} \cdot \vec{S}_N$

Spin rotates about dark matter velocity

Effective time varying magnetic field

$$B_{eff} \lesssim 10^{-16} \cos{(m_a t)} \text{ T}$$

QCD axion induces electric dipole moment for neutron and proton

Dipole moment along nuclear spin

Oscillating dipole: $d \sim 3 \times 10^{-34} \cos{(m_a t)} \ e \, \mathrm{cm}$

Apply electric field, spin rotates

Other light dark matter (e.g. dark photons) also induce similar spin precession

CASPEr

Axion affects physics of nucleus, NMR is sensitive probe

Larmor frequency = axion mass → resonant enhancement

SQUID measures resulting transverse magnetization

NMR well established technology, noise understood, similar setup to previous experiments

Example materials: LXe, ferroelectric PbTiO₃, many others

CASPEr-General Axions frequency (Hz)

~ year to scan one decade of frequency

CASPEr-QCD Axion

frequency (Hz)

Verify signal with spatial coherence of axion field

Dark Photon Detection with a Radio

with

Peter Graham
Kent Irwin
Saptarshi Chaudhuri
Jeremy Mardon
Yue Zhao

arXiv: 1411.7382

Dark Photon Dark Matter

Many theories/vacua have additional, decoupled sectors, new U(1)'s

Natural coupling (dim. 4 operator): $\mathcal{L} \supset \varepsilon F F'$

mass basis:

$$\mathcal{L} = -\frac{1}{4} \left(F_{\mu\nu} F^{\mu\nu} + F'_{\mu\nu} F'^{\mu\nu} \right) + \frac{1}{2} m_{\gamma'}^2 A'_{\mu} A'^{\mu} - e J_{EM}^{\mu} \left(A_{\mu} + \varepsilon A'_{\mu} \right)$$

photon with small mass and suppressed couplings to all charged particles

oscillating E' field (dark matter)

can drive current behind EM shield

Dark Matter Radio Station

Tunable resonant LC circuit (a radio)

EXPECTED REACH

Parameters: volume ~0.1 m³, T= 100mK, Q=10⁶, I year

Dark Matter Detection with Accelerometers

with

Peter Graham
David Kaplan
Jeremy Mardon
William Terrano

B-L Dark Matter

Other than electromagnetism, only other anomaly free standard model current

$$\mathcal{L} = -\frac{1}{4} \left(F'_{\mu\nu} F'^{\mu\nu} \right) + \frac{1}{2} m_{\gamma'}^2 A'_{\mu} A'^{\mu} - g J^{\mu}_{B-L} A'_{\mu}$$

Protons, Neutrons, Electrons and Neutrinos are all charged

Electrically neutral atoms are charged under B-L

Force experiments constrain $g < 10^{-21}$

oscillating E' field (dark matter)

can accelerate atoms

Force depends on net neutron number - violates equivalence principle. Dark matter exerts time dependent equivalence principle violating force!

The Relaxion

$$\mathcal{L} \supset (-M^2 + g\phi)|h|^2 + gM^2\phi + g^2\phi^2 + \dots + \Lambda^4\cos\frac{\phi}{f}$$

Hierarchy problem solved through cosmic evolution - does not require any new physics at the LHC

 ϕ is a light scalar coupled to higgs with small coupling g

$$\implies \frac{g\phi}{v}m_q\bar{q}q$$

Dark matter
$$\phi \implies \phi = \phi_0 \cos(m_\phi (t - \vec{v} \cdot \vec{x}))$$

Time variation of masses of fundamental particles

$$\implies$$
 force on atoms $\frac{g\nabla\phi}{v}m_q \sim \frac{gm_\phi\vec{v}}{v}m_q$

Force violates equivalence principle. Time dependent equivalence principle violation!

Detection Options

Measure relative acceleration between different elements/isotopes.

Leverage existing EP violation searches and work done for gravitational wave detection

Torsion Balance

Force from dark matter causes torsion balance to rotate

Measure angle, optical lever arm enhancement

Atom Interferometer

Dark Matter

Differential free fall acceleration

Stanford Facility

Pulsar Timing Arrays

Pulsars are known to have stable rotation - can be used as clocks

Presently used to search for low frequency (100 nHz) gravitational waves.

Pulsar signal modulates due to gravitational wave passing between earth and the pulsar

Force by dark matter causes relative acceleration between Earth and Pulsar, leading to modulation of signal

Relaxion changes electron mass at location of Earth - changes clock comparison

Projected Sensitivities

Torsion Balance limited by fiber thermal noise Atom interferometers by shot noise

Projected Sensitivities

Torsion Balance limited by fiber thermal noise

Atom interferometers by shot noise

The Dark Matter Landscape

Axions, Hidden photons etc. Classical Field Dark Matter

Coherent over T~ μs - 10^6 years. Enough time to build phase ~ (δE) T. ADMX, CASPEr, DM-Radio Close tie to Weak Scale Physics, Thermal Freeze-out

What about 10⁻⁴ eV - GeV?

Hard scattering, 10 - 100 keV energy deposition, probing higgs exchange

This Talk

Beyond solar neutrinos?

Directional Detection of Dark Matter with Crystal Defects

(in progress)

with
Alex Sushkov and Nicholas Zobrist

Challenge: Big Target Mass. Need directional detection at solid state density.

Collision Aftermath

Tell-tale damage cluster well correlated with direction of initial ion, localized within ~ 50 nm

Collision Aftermath

Tell-tale damage cluster well correlated with direction of initial ion, localized within ~ 50 nm

Results of TRIM simulation, 30 keV initial ion

O(200 - 300) vacancies and interstitials, lattice potential \sim 30 eV

Damage cascade well correlated with direction of input ion

Need nano-scale measurement of damage cascade

Nitrogen Vacancy Center in Diamond

Collect light

Electronic levels sensitive to crystal environment ~ 50 nm scale

~ I per (30 nm)³ of NV centers in bulk diamond demonstrated

Nano-scale measurements experimentally demonstrated. Active development of sensors by many groups around the world.

Can this be used for directional detection? What is the effect of the damage cascade on a NV center?

Note: similar phenomenology applies to F-centers of Metal Halides

Damage Cascade and NV Centers

Damage leads to strain in crystal.

Strain shifts transition line

Strain:
$$\nabla u \propto \frac{1}{r^3} \times \mathcal{O} (100 - 300)$$

(Hooke's Law)

TRIM simulation of damage cascade - calculate strain using Hooke's law

NV center shift ~ 100 kHz @ 30 nm Natural line width ~ kHz

Single NV center has sensitivity to cascade!

sectioned detector crystal pull out section

Detector Concept

Large detector, segments of thickness ~ mm

NV center density $\sim 1 \text{ per } (30 \text{ nm})^3$

Conventional WIMP scattering ideas (scintillation, ionization etc.) to localize interesting events

Expect few events/year that could be WIMP or neutrinos

Pull out segments of interest. Conventional schemes localize events to within mm

Micron-scale localization by simply shining light - damaged area will have measurable frequency shifts

For nano-scale resolution, apply external magnetic field gradient - hence need segmentation

Results

Take crystal. Grid of NV centers with density I per (30 nm)³

Run ~ 1000 TRIM simulations, get cascade for each. Can grid distinguish direction (including head vs tail)?

More damage in tail vs head used for discrimination. Above 10 keV, efficiency > 80%, false positive < 4%

5 σ detection with few events!

Magnetic Bubble Chambers

(in progress)

with

Phil Bunting, Giorgio Gratta, Jeffrey Long and Tom Melia

The Dark Matter Landscape

Coherence time of signal too short for phase measurement to work. Energy deposition too small to be been using conventional WIMP calorimeters

Need amplification of deposited energy (meV - keV)

Challenge: Need large target mass. Rare dark matter event. Requires amplifier stability > years

Concept

Consider magnet with all spins aligned

Spins now in metastable excited state with energy ~ g µ B

Dark Matter collides, deposits heat. Causes meta-stable spin to flip

Spin flip releases stored Zeeman energy (exothermic). Released energy causes other spins to flip, leading to magnetic deflagration (burning) of material.

Amplifies deposited energy. Like a bubble chamber. Is this possible? Stability?

Single Molecular Magnets

Need weak spin-spin coupling. But need large density - necessary for heat conduction. Can't use gas.

Organo-Metallic complexes.

Central metal complex surrounded by organic material.

Weak coupling between adjacent metal complexes - but still large density

Each molecule acts as an independent magnet

Recently discovered systems. Few 100 known examples. Can make large samples. Magnetic deflagration experimentally observed and well studied in Manganese Acetate complexes

Magnetic Deflagration

System well described by 2 level Hamiltonian. Two states separated by energy barrier.

Turn on magnetic field, metastable state decays to ground state through tunneling

$$\tau \propto \tau_0 \exp \left(U_{\rm eff}/T\right)$$

Ultra-long lived state at low temperature - localized heating rapidly decreases life-time, decay results in more energy release

Condition for Deflagration

Initially heat region of size λ to T

Thermal Diffusion, lowers T

$$au_{\rm D} \propto \lambda^2$$

Spin flips, releases energy, increases T

$$au \propto au_0 \, \exp \left(U_{\rm eff} / T \right)$$

Deflagration occurs as long as we heat a sufficiently large region

 $U_{\rm eff}$ and τ_0 sets the detector threshold. Short τ_0 and small $U_{\rm eff}$ means tiny energy deposit will sufficiently heat up material to trigger deflagration. Low threshold

Known examples with $T_0 \sim 10^{-13}$ s, $U_{eff} \sim 70$ K, enabling 0.01 eV thresholds

Detector Stability

High energy (> MeV) background from radio-active decays.

Detect MeV events using conventional means. Actual background at low energy very low - forward scattering of compton events

Problem: MeV events will constantly set off detector. Reset time vs operation time? Big problem for bubble chambers like COUPP

Expected background $\sim 1/(m^2 s)$. Initial detector size $\sim (10 cm)^3$ (kg mass), I background event $\sim 100 s$

With precision magnetometers, don't need entire crystal to flip

Within $\sim 10 \, \mu s$, flame $\sim 10 - 100 \, \mu m$. Visible with SQUID.

Shut off B, turn off fuel. Deflagration stops. Lose $\sim (10 - 100 \ \mu m)^3$ of volume every 100 s.

Potential Reach

$$\mathcal{L} = -\frac{1}{4} \left(F_{\mu\nu} F^{\mu\nu} + F'_{\mu\nu} F'^{\mu\nu} \right) + \frac{1}{2} m_{\gamma'}^2 A'_{\mu} A'^{\mu} - e J_{EM}^{\mu} \left(A_{\mu} + \varepsilon A'_{\mu} \right)$$

Absorption obtained from photoabsorption. Exposure of I kg-year

Conclusions

The Dark Matter Landscape

Poor observational constraints on dark matter

Experiments under development can now search for dark matter particles with mass between $10^{-22} \, \mathrm{eV} - 10^{-6} \, \mathrm{eV}$, using a variety of precision measurement tools

Explored concepts for WIMP directional detection in solid state densities and single molecular magnets for dark matter in the range 10⁻⁴ eV - GeV

Need to develop tools to cover full range of possibilities