THE DARK ENERGY SURVEY AND GRAVITATIONAL WAVES

Marcelle Soares-Santos
Fermilab
DES Collaboration

DISTANCE-REDSHIFT RELATION

Radio waves stretched as Universe expands

$$
z=\left(\lambda_{\mathrm{obs}}-\lambda\right) / \lambda
$$

Galaxy moving away with the expansion of the Universe

Faraway sources are more affected then nearby ones.

We can measure the rate of expansion using the distance-redshift relation!

ASTROPHYSICAL OBSERVABLES

Luminosity distance: standard candle

I. supernovae (SNe)

DES is sensitive to Dark Energy via 4 probes.
*CMB results from Planck are used in DES analyses.

Angular diameter distance: standard ruler
*cosmic microwave background (CMB)
2. baryon acoustic oscillations (BAO)

GROWTH OF STRUCTURE

The growth of the largest structures in the universe, clusters of galaxies, is inhibited by dark energy.

ASTROPHYSICAL OBSERVABLES

Growth of structure:
3. weak gravitational lensing (WL)
4. galaxy cluster abundance (Clusters)

DES is sensitive to
Dark Energy via 4 probes.
WL, Clusters are also sensitive to angular diameter distance.

- Clusters: Number density vs. Mass vs. redshift
- Radial distances depend on geometry of Universe
- Mass distribution depends on growth of structure

DARK ENERGY SURVEY

DEcam

3 sq deg FOV, 570 Mpix optical CCD camera

Facility instrument at CTIO Blanco 4-m telescope in Chile

First light: Sep 2012

Survey
5000 sq deg grizY to 24th mag overlapping with SPT

30 sq deg SNe survey 0.9 arcseconds seeing

525 nights: 2013-2018

DES SITE: CERROTOLOLO, CHILE

Marcelle Soares-Santos DESGW $\boldsymbol{\text { KICP Colloquium }}$ - Oct I2, 2016

DES PROJECTIONS (5 YEARS)

$5000 \mathrm{deg}^{2}, 0.9^{\prime \prime}$ seeing, $24^{\text {th }}$ mag (redshift~1.4)

300M galaxies, shapes, I OOK clusters, 4K SNe

4 combined probes
3-5x improved Dark Energy measurement

DES - SCIENCE RESULTS

DES has published over 70 papers based on the data taken so far.
Most are astrophysics results building towards cosmology measurements (which are coming soon).

We also have results that go beyond the traditional dark energy probes, e.g.:

- Searches for optical signatures of gravitational wave events that might result in a new observable for cosmology.

In this talk I present a selection of recent DES results.

GW+EM OPPORTUNITIES

Astrophysics

First detections of NS-NS, NS-BH mergers
Evolution of binary systems
Origin of r-process elements in the Universe
Neutron Star equation of state

Cosmology

Standard sirens (the GW-equivalent of standard candles)

Physics of space-time
Time of flight experiments (including neutrinos) Tests of General Relativity

STANDARD SIRENS

\downarrow EM

\downarrow distance
Hubble Diagram for ceptioiden

Distance \longrightarrow

DES SCIENCE: GW

Can we take advantage of this new way to observe the universe, with Gravitational Waves, to add a new Dark Energy probe to our repertoire and beat down the systematics? With this motivation, we launched the DESGW project in 2013.

We obtained strong support from the DES Collaboration - thank you, Josh! including experts from the SNe group (Kessler, Sako, Brout, Scolnic, Frieman, et al.).

We established a joint effort with LIGO members (Holz, Chen, Doctor, Farr) and non-DES DECam users (Berger, Cowperthwaite et al.).

We developed an analysis that is sensitive to NS-NS, BH-NS mergers out to 200 Mpc - and didn't see an optical counterpart. It turned out the first events did not have a NS in them, but prospects for future are good!

Funding: Fermilab LDRD (FY|5, FY|6), UChicago SCl grant (FY|7). Telescope time: Blanco/DECam nights (3 in 2015B, 5 in 20I6B; PI: Berger).

THE PROGRAM

GW trigger

 time stamp sky region distance event type
DECam search system prepare template images schedule observations take new images perform image subtraction detect, model counterpart

LIGO: arXiv:I304.0670

We are here!	Epoch	Estimated Run Duration	$\begin{gathered} E_{\mathrm{GW}}=10^{-2} M_{\odot} c^{2} \\ \text { Burst Range (Mpc) } \end{gathered}$		BNS Range (Mpc)		Number of BNS Detections	\% BNS Localized within	
			LIGO	Virgo	LIGO	Virgo		$5 \mathrm{deg}^{2}$	$20 \mathrm{deg}^{2}$
aLigo	$\overline{2} 015$	$\overline{3}$ months	40-60	---	$40-80$	-	0.000 $\overline{4}-\overline{3}$		-
aLigo	2016-17	6 months	60-75	20-40	80-120	20-60	0.006-20	2	5-12
1 aVirgo + aLigo	2017-18	9 months	75-90	40-50	120-170	60-85	0.04-100	1-2	10-12
aVirgo + aLigo	2019+	(per year)	105	$40-80$	200	$65-130$	0.2-200	3-8	8-28
	+ (Ind	(per year)	105	80	200	130	$0.4-400$	17	

CHALLENGING SEARCH AREAS

Marcelle Soares-Santos DESGW KICP Colloquium © Oct I2, 2016

BUT WE HAVETHE RIGHT INSTRUMENT...

3 square degree FOV on a 4-meter telescope!

The Small Magellanic Cloud, DES Ist light image, Sep 122012

THE PROGRAM IN ACTION

The Ist Event:
GWI509I4

GWI50914

Time: Sep 14, 2015 09:50:4|
FAR: I/203k yr
Distance: 410 Mpc
Type: BBH merger

LVC sky localization probability map (final)

GWI509|4

Time: Sep 14, $20 \mid 5$ 09:50:4|
FAR: I/203k yr

Obs time: 2015 Sep 18
(end of the night)

Distance: 410 Mpc
Type: BBH merger

DES mag limit model

GWI509|4

Time: Sep 14, $20 \mid 5$ 09:50:4|
FAR: I/203k yr

Obs time: 2015 Sep 18 (end of the night)

Distance: 410 Mpc
Type: BBH merger

DES source detection probability map

GWI509|4

Time: Sep 14, $20 \mid 5$ 09:50:4|
FAR: I/203k yr

Obs time: 2015 Sep 18
(end of the night)

Distance: 410 Mpc
Type: BBH merger

DESxLIGO source detection probability map

28 fields, izz bands, 90 sec (II in footprint, 17 outside) 20 fields, izz bands, 5 sec (LMC area)

Program	Night	MJD	Δt^{a} $($ days $)$	$\left\langle\mathrm{PSF}\left(\mathrm{FWHM}_{i}\right)\right\rangle$ (arcsec)	\langle airmass \rangle	$\left\langle\operatorname{depth}_{i}\right\rangle$ (mag)	$\left\langle\mathrm{depth}_{z}\right\rangle$ (mag)	$A_{\text {eff }^{\mathrm{b}}}^{\left(\mathrm{deg}^{2}\right)}$
Main, $1^{\text {st }}$ epoch	$2015-09-17$	57383	3.88	1.38	1.50	22.71	22.00	52.8
	$2015-09-18$	57384	4.97	1.35	1.46	22.82	22.12	14.4
Main, 2 $2^{\text {nd }}$ epoch	$2015-09-20$	57286	6.86	2.17	1.51	22.18	21.48	67.2
Main, $3^{\text {rd }}$ epoch	$2015-10-07$	57303	23.84	1.46	1.40	22.33	21.63	67.2
LMC, initial	$2015-09-17$	57383	3.98	1.14	1.30	21.32	20.62	14.4
LMC, extension	$2015-09-26$	57292	12.96	1.21	1.28	20.91	20.21	33.6

SYNERGIES WITH SN SURVEY

Status of DES SN Survey:

Example of SNe detection using the DES difference imaging pipeline.

The Difference Imaging Pipeline for the Transient Search in the Dark Energy Survey

Kessler, et al. 2015, AJ, 150, 172

Over 200 spectroscopically confirmed type la SNe (photometrically selected sample is about $5 x$ larger)

Also discovered many other types of supernova, including rare superluminous SNe.

Cosmology results using spectroscopically selected type la SNe coming soon.

IMAGE PROCESSING

Each search image and template run through single epoch processing (few hours each)

Then each CCD in each search image goes through difference imaging pipeline in parallel,
 copying in needed templates (\sim | hr/job)

Challenge: raw images to plots in <24 hrs

Completely automated job submission immediately after search image available. Able to run dozens of images in parallel
 using Fermilab and Open Science Grid resources.

ANALYSIS

Search for a decaying transient (Soares-Santos et al. 2016)

Area (square degrees)
Total observed: I 02
Excluding LMC: 84
Considering fill-factor: 67
Good after diffimg: 40
($\sim 30 \%$ loss due to missing templates)
Sample selection
(all cuts in i and z bands)
0) Good detection in Ist epoch

1) 2nd epoch $\mathrm{S} / \mathrm{N}>2$
2) $3+$ sigma Ist to 2 nd epoch flux decline
3) $S / N<3$ sigma in the 3rd epoch

Efficiency estimates from simulated events
decay rate: $0.3 \mathrm{mag} /$ day
50% recovery rate depth:

$$
\begin{array}{ll}
\text { color: }(i-z) \sim 1 & i=21.5 \\
\text { color: }(i-z) \sim 0 & i=21.1 \\
\text { color: }(i-z) \sim-1 & i=20.1
\end{array}
$$

ANALYSIS

Search for a decaying transient (Soares-Santos et al. 2016)

Result

Zero candidates pass our selection criteria. No optical signatures are predicted for BBH events, so this is not surprising.

Sample selection (all cuts in i and z bands)
0) Good detection in Ist epoch

1) 2nd epoch $\mathrm{S} / \mathrm{N}>2$
2) 3+ sigma Ist to 2 nd epoch flux decline
3) $S / N<3$ sigma in the 3rd epoch

Number of selected events				
$\operatorname{mag}(i)$	raw	cut 1	cut 2	cut 3
18.0-18.5	84	1	0	0
18.5-19.0	177	1	0	0
19.0-19.5	291	2	0	0
19.5-20.0	227	2	1	0
20.0-20.5	156	17	2	0
20.5-21.0	225	42	3	0
21.0-21.5	334	84	2	0
21.5-22.0	756	159	1	0
22.0-22.5	1099	183	0	0
total	2349	491	9	0
decline	This type of search is a starting point for future NS-NS merger searches.			

ANALYSIS 2

Search for disappearing stars in the LMC (Annis et al. 2016) GWI 509 I 4 was initially thought to be a burst event, and could be due to a core-collapse (CC) nearby.

CC's often result in supernova explosions (e.g. I987A), but none were
 reported in the LMC at the time.
~ 20\% of the CC's are expected to fail to produce supernovae. Could GWI50914 be associated with a failed SNe?

ANALYSIS 2

Search for disappearing stars in the LMC (Annis et al. 2016)
We take possible progenitors
(152 red supergiants) catalogued in the literature, and search for them via visual inspection. I 44 were in the observed area; all accounted for.

We concluded that the GW event was unlikely to arise from a failed SNe .

LIGO's result published yesterday show we learned that GI509|4 was a BBH merger. This type of search is a template for future GW events, specifically those likely to be a CC event.

EVENT \#2 - GWI5I226

ANALYSIS 3

Search for a decaying transient (Cowperthwaite et al. 2016)

36 square degrees observed (28.8 if considering fill-factor)

4 epochs (last one is template)
4 "candidates" (3 AGNs, I SN)
Pre-existing templates would have helped reject those. It is really important to have preexisting templates!

Rising portion of light curve helps too. Need to observe ASAP after a trigger!

GRAVITATIONAL WAVES

A DECam Search for an Optical Counterpart to the LIGO Gravitational Wave Event GW151226 Cowperthwaite, et al. 2016, submitted to ApJL

A Dark Energy Camera Search for Missing Supergiants in the LMC after the Advanced LIGO Gravitational-wave Event GW150914
Annis, et al. 2016, ApJL, 823, 34

A Dark Energy Camera Search for an Optical Counterpart to the First Advanced LIGO Gravitational Wave Event GW150914

Soares-Santos, et al. 2016, ApJL, 816, 98

Funding:

LDRD (FY15, FY16), Chicago SCI (FY17)

Potentially a new cosmological probe!

Figure 8: H_{0} measurement uncertainty as a function of the number of multi-messenger (GW+EM) double neutron star merger events observed by an advanced LIGO-Virgo network. The dashed line shows Gaussian convergence.

These are exciting times for science with the Dark Energy Survey and Gravitational Waves. Last season was a blast!

We are now preparing for a second observing run. Stay tuned for exciting results coming soon!

