
Appendix C

A Fortran Primer: (and cheat
sheet)

This section will provide a basic intro to most of the commonly occuring features
of Fortran that you will need for the course. This list is by no means exhaustive, but
it should be enough to get you where you need to go. For more information, We
have extensive fortran manuals scattered about the observatory. By the end of this
section you should understand the basic data types, the structure of arrays, standard
arithmetic operations, loops and conditional statements, subroutines and functions,
and basic IO. This section will also briefly discuss how to build programs using
make and how to debug them using dbxtool/debugger.

C.1 Basic Fortran Concepts and Commands

Data types for the most part there will be only three basic types of data you will
have to deal with, integers, floating point numbers and characters. In fortran
these data types are declared as

integer exact whole numbers (-3, 0, 5 234), usually stored in 4 bytes

real inexact representation of decimal numbers (3.1415, 27.2, 1.e23). Usu-
ally stored as 4 bytes, good for about 6-9 significant digits, ranges from
about 10−38–1038

double precision same as real but much larger range and precision.
Usually stored as 8 bytes, good for about 15-17 significant digits, ranges
from about 10−308–10308. You can get more precision than this but you
should have a good reason.

character, character*n either a single character or a string of char-
acters of length n.

Constant and Variable names A constant or variable can have any name with
up to 32 characters (To play it safe though, Standard Fortran allows only
6 characters). The name must start with a letter, but can have most of the

19

20

alphanumeric characters in it. Fortran also has the annoying feature of im-
plicit typing so that if undeclared, any variable name that starts with the
letters i through n are assumed to be integers, everything else is assumed
real. Rigorous programming practice suggests that you start every program
with implicit none and declare every variable. It’s annoying but it keeps
you honest. I will try to do this in my programs. A sample program declara-
tion might look like

implicit none
integer npnts, n
real c, dcdt
real car(1000),tar(1000)
character*40 fileout

arrays Perhaps the most important feature for modeling is arrays. Arrays are sim-
ply ordered sets of numbers that can be addressed by index. Every array has
a name (e.g. car or tar above) and a length (here both car and tar are ar-
rays of real numbers of length 1000). Arrays can be of integers, reals, double
precision or even characters (fileout is actually an array of 40 characters).
Each member of an array can be addressed as by specifying its index in the
array (car(10), tar(n) etc.). Arrays can also have up to 7 dimensions.
A two dimensional array a(10,10) can be thought of as 10 1-dimensional
arrays of 10 numbers each (a total of 100 elements). Most importantly in
fortran, the leading index increases fastest i.e. for a(i,j), the i=1 and i=2
are next to each other in memory.

Simple operations integer and floating point numbers and arrays of them can all
be operated on by standard mathematical options. The most commonly used
arithmetic are

= assignment x=y
** exponential a=x**y
/, * divide, multiply a=x/y, or a=x*y

+, - add subtract a=x+y, or a=x-y

The order of evaluation is standard algebraic and parentheses can be used to
group operands. In addition to the simple operations, Fortran also has some
built in intrinsic functions. The most commonly occuring are

trigonometric functions sin(x), cos(x), tan(x), asin(x), acos(x),
atan(x), atan2(x) (inverse trig functions) sinh(x), cosh(x), tanh(x)
etc.

exponential functions exp(x), log(x) (natural log), log10(x) (log base
ten), sqrt(x) square-root.

conversion functions these functions will convert one data type to another,
e.g. int(x) returns the integer value of x, real(?) converts anything

Fortran 21

to a real, dble(?) converts anything to a double (also operations for
complex numbers)

misc. functions see table 6.1

Program flow control Any program will just execute sequentially one line at a
time unless you tell it to do something else. Usually there are only one of
two things you want it to do, loop and branch. The control commands for
these are

do loops Do loops simply loop over a piece of internal code for a fixed
number of loops and increment a loop counter as they go. do loops
come in the standard line number flavour

do 10 i=1,n,2
j=i+1
other stuff to do

10 continue

(note the spacing of the line number and starting commands at least 6
characters over is important (stupid holdover from punch cards). Or in
the non-standard but more pleasant looking form

do i=1,n,2
j=i+1
other stuff to do

enddo

Do loops can be nested a fair number of times (but don’t overdo it)
conditional statements Being able to make simple decisions is what sepa-

rates the computers from the calculators. In fortran separate parts of
the code can be executed depending on some condition being met. The
statements that control this conditional execution are
if a single line of the form

if (iam.eq.crazy) x=5.
will assign a 5. to the variable x if the expression in parentheses is
true, otherwise it will simply skip the statement.

block if statements More useful blocks of execution can be delimited
by block ifs of the form

if (moon.eq.full) then
call howl(ginsberg)
x=exp(ginsberg)

endif
the block if statements can also be extended to have a number of
condition statements. If there are only two, it looks like

if (moon.eq.full) then
call howl(ginsberg)
x=exp(ginsberg)

22

280 FORTRAN 2.0.1 Reference Manual—October 1992

6

Absolute
Value

|a|

Read Note 6

(ar2 + ai2)**(1/2)

1 ABS IABS
ABS
DABS
CABS
CQABS♦
QABS ♦

ZABS ♦

CDABS♦

Integer
Real
Double
Complex
Complex*32
Real*16
Complex*16
Complex*16

Integer
Real
Double
Real
Real*16
Real*16
Double
Double

Remainder a1-int(a1/a2)*a2
Read Note 1

2 MOD MOD
AMOD
DMOD
QMOD ♦

Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

Transfer
of Sign

 |a1| if a2 ≥ 0
-|a1| if a2 < 0

2 SIGN ISIGN
SIGN
DSIGN
QSIGN ♦

Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

Positive
Difference

a1-a2 if a1 > a2
0 if a1 ≤ a2

2 DIM IDIM
DIM
DDIM
QDIM ♦

Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

Double
and Quad
Products

a1 * a2 2 DPROD
QPROD ♦

Real
Double

Double
Real*16

Choosing
Largest
Value

max(a1, a2, …) ≥ 2 MAX MAX0
AMAX1
DMAX1
QMAX1 ♦

Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

AMAX0
MAX1

Integer
Real

Real
Integer

Choosing
Smallest
Value

min(a1, a2, …) ≥ 2 MIN MIN0
AMIN1
DMIN1
QMIN1 ♦

Integer
Real
Double
Real*16

Integer
Real
Double
Real*16

AMIN0
MIN1

Integer
Real

Real
Integer

Table 6-1 Arithmetic Functions (continued)

Intrinsic
Function

Definition No. of
Args

Generic
Name

Specific

Name

 Type of
Argument Function

Fortran 23

else
call wait(1,month)

endif
or if there are several conditions

if (expression) then
statements galore....

elseif (expression2)
more statements

elseif (expression3)
are you tired of this yet

else
default statements

endif
Note: a block if of this type will execute the first true expression
and the jump to the end if (even if several conditions are true).

relational operators The statement moon.eq.full is a conditional
statement that evaluates to true if the variable moon is logically
equivalent to the variable full (don’t use = for .eq. very dif-
ferent animals). The operator .eq. is a relational operator that
tests for equivalence. Other relational operators are .lt. (less-
than),.le. (less-than-or-equal-to) ,.ge. (greater-than-or-equal-
to),.gt] (greater-than). Individual conditional statements can also
be linked together using the operators .and., .or., .not. (and a
few less useful things like exclusive or .xor.. Examples include

if ((moon.eq.full).and.(i.eq.werewolf))
& call runlikehell()

if ((x.eq.0.5).or.(i.le.2)) then
x=x*i

endif

Subroutines and Functions Subroutines and functions are separate pieces of code
that are passed arguments, do something and return. Subroutines and func-
tions are similar except that functions return a value and are used like the
intrinsic functions i.e.

integer myfunction, k,j
external myfunction
real x
...
k=myfunction(x,j)

and are declared like

integer function myfunction(r,i)
real r
integer i
myfunction=mod(int(r),i))

24

return
end

Note the variables r and i are “dummy variables” that hold the place of x
and j in the main routine. Subroutines also have dummy variables but are
“called” and don’t return a value (although it will often change the values of
what it is passed). Example subroutine call would be

integer k,j
real x(100),a
....
j=10
a=2.5
call arrmult(x,j,a)

and the subroutine itself would look like

subroutine arrmult(ar,n,con)
integer n
real ar(n),con
integer i
do i=1,n
ar(i)=ar(i)*con

enddo
return
end

Note that arrays are passed to subroutines and functions by name. Most
importantly, the dimension of the array within the subroutine can be passed.
In the above routine, only the first 10 elements of x are multiplied by 2.5.
If we wanted to multiply the elements from 6 to 16 we could also do

call arrmult(x(6),11,a)

Note that there are actually 11 elements between indexes 6 and 16. In ad-
dition, arrays that are declared as 1-D arrays in the main program can be
operated on as variable length n-d arrays in a subroutine (and vice-versa).
E.g.

integer i,j
real x(1000),a
...
i=10
j=10
a=2.5
call arrmultij(x,i,j,a)

Fortran 25

...
subroutine arrmultij(ar,m,n,con)
integer m,n
real ar(m,n),con
integer i,j
do j=1,n

do i=1,m
ar(i,j)=ar(i,j)*j*con

enddo
enddo
return
end

We will make extensive use of this feature for efficient programming in n-
dimensions. This is the one thing you cannot do well in C which is a real
shame.

Input/Output The last important thing you might want to do is actually read in-
formation into a program and spit it out. This is perhaps the worst part of
fortran, particularly when dealing with character strings. Nevertheless, with
a few simple commands and unix, you can do most anything. A few impor-
tant io concepts

logical units and open uggh, in fortran, files are referred to by “logical
units” which are simply numbers. To open a file called junk.txt
with logical unit 9 you would do something like

lu=9
open(lu,file=’junk.txt’)

The two most important files stdin and stdout already have logical
units associated with them. stdin is 5 and stdout is 6.

reading a file to read data from a file you use the read statement. The
principal version of this you will need to read things from the keyboard
or from stdin looks like

read(5,*) tmax,npnts,(ar(i),i=1,3)

the 5 is the logical unit and the * says to just read in each datatype
as whatever it was declared as so if tmax and ar are real and npnts
is an integer it will assume that the numbers in stdout will be in those
formats. Note the funny way of reading 3 items of array ar is known
as an implicit do loop useful but clunky.

writing to a file to write data from a file you use the write statement which
works just like read i.e.

write(6,*) ’here are some numbers ’,tmax,npnts,(ar(i),i=1,3)
write(9,*) ’Howdy ’

a synonym for write(6,*) is the print statement i.e.

26

print *, ’here are some numbers ’,tmax,npnts,(ar(i),i=1,3)

is equivalent to the first of the above two lines.

C.2 A Few pointers to good coding

Comment liberally Always write your code so that 6 months (or two weeks) from
now you know what it does. comment lines start with a c in the first column
or after a ! in any column (the ! comment is non-standard so be careful).

make 1 code to do 1 thing , Super-duper multi-purpose codes with hundreds of
options become a nightmare to maintain and debug. Since you’re only writ-
ing private code for yourself, I find it is most sensible to create separate pro-
grams for each difference in boundary or initial conditions etc. Using make
and makefiles can simplify this process immensely. This way if you try
something and it doesn’t work, you can just go back to a previous version.

Write your loops right Always write your loops with the computer in mind. i.e.
your inside loop should always be over the fastest increasing index. This will
give the biggest increase in performance for the least amount of work.

NO GOTO’s except in dire need avoid uncontrolled use of the goto statement as
it will lead to immense confusion. See the first chapter of Numerical Recipes
for the few necessary controlled uses of goto.

limit ifs and functional calls within array loops If a loop is designed to quickly
handle an array, an embedded if statement or heavy function calls can
destroy performance (although many optimizing compilers will do some
strange things to try and prevent this).

keep it simple and conservative There are loads of fancy extensions in Sun for-
tran that might not work on other machines. The less fancy gee-gaws you
use the less you have to replace when you change platforms

use dbxtool/debugger and make see below and man pages, these tools will
make your life much easier for organizing and debugging code.

C.3 A sample program

program euler1
c**
c euler1: program to calculate the concentration of a
c single radioactive element with time using an
c euler method
c**

implicit none
integer nmax !maximum array size
parameter (NMAX=500) ! set nmax to 500
integer npnts, n ! number of steps, counter
real c, dcdt ! concentration, decay rate,

Fortran 27

real tmax, t,dt ! max time,time, timestep
real car(NMAX),tar(NMAX) ! arrays for concentration and time
character*40 fileout ! character array for output filename
integer kf, lu ! integer for character index, output file
integer iprinttrue, iprinterr ! flag for calculating true solution,

! or error (1 yes, 0 no)
integer mylnblnk ! even functions need to be typed
external mylnblnk

c
c -------read input
c

read(5,*) fileout
read(5,*) tmax, npnts, iprinterr, iprinttrue

c
c -------set up initial parameters
c

dt = tmax/ (npnts - 1) ! set the time step (why is it n-1?)
c = 1. ! initial concentration
t = 0. ! initial time
car(1)=c ! store in arrays car and tar
tar(1)=t

c
c-------loop over time steps with an euler method
c

do n=1,npnts-1 !start the loop
call decay1(t,c,dcdt) ! get the decay rate at the present step
c=c + dcdt*dt ! take an euler step
t = dt*n ! calculate the time for the next step
car(n+1)=c ! store in array car
tar(n+1)=t ! store the time in array tar

enddo ! end the loop

c
c-------write the solution to fileout_c.xy
c

lu=9 ! set the fortran logical unit (ugh!) to any number
kf=mylnblnk(fileout,len(fileout)) ! find the last blank space in string
print *, ’Writing file ’,fileout(1:kf)//’_c.xy’
call writexy(lu,fileout(1:kf)//’_c.xy’,tar,car,npnts) !writem-out

c
c-------if iprinterr=1, then calculate and write out fractional error between
c-------solution and true solution to fileout_cerr.xy
c

if (iprinterr.eq.1) then
do n=1,npnts

car(n)=car(n)/exp(-1.*tar(n)) - 1. ! calculate error
enddo
print *, ’Writing file ’,fileout(1:kf)//’_cerr.xy’
call writexy(lu,fileout(1:kf)//’_cerr.xy’,tar,car,npnts)

endif
c
c-------if iprinttrue=1, then calculate and write out true solution
c------- to fileout_ctrue.xy
c

if (iprinttrue.eq.1) then
do n=1,npnts

car(n)=exp(-1.*tar(n)) ! calculate true concentration
enddo
print *, ’Writing file ’,fileout(1:kf)//’_true.xy’
call writexy(lu,fileout(1:kf)//’_ctrue.xy’,tar,car,npnts)

endif

c
c-------exit the program
c

end

c***
c decay1: subroutine that returns the rate of decay of a radioactive
c substance as a function of concentration (and time)

28

c c is concentration
c dcdt is the change in c with time
c t is time
c here, dcdt= -c
c***

subroutine decay1(t,c,dcdt)
implicit none
real t, c, dcdt

dcdt= -c

return
end

c***
c mylnblnk integer function to return position of last non-character
c in a string
c***

integer function mylnblnk(str,lstr)
character str(lstr),space
integer l
space=’ ’
l=lstr

10 if (str(l).eq.space) then
l=l-1
goto 10

endif
mylnblnk=l
return
end

C***
C writexy: writes 2 1-d arrays (x,y) to output file luout of name
C fname.xy
C***

subroutine writexy(luout,fname,xarr,yarr,npnts)
integer luout
character *(*) fname
real xarr(npnts), yarr(npnts)

open(luout,file=fname)
do 10 j=1,npnts

write(luout, *) xarr(j), yarr(j)
10 continue

close(luout)
return
end

C.4 A sample makefile

##
makefile for the program euler1 which calculates
radioactive decay for a single element using an euler method
##

PROGRAM=euler1
OBJECTS=$(PROGRAM).o decay1.o writexy.o lnblnk.o
FFLAGS= -g
DESTDIR=$(HOME)/$(ARCH)

$(PROGRAM): $(OBJECTS)
$(FC) $(FFLAGS) $(OBJECTS) -o $(PROGRAM)

$(OBJECTS):

install: $(PROGRAM)
mv $(PROGRAM) $(DESTDIR)

Fortran 29

clean:
rm -f *.o *.a core

cleanall:
rm -f *.o *.a core $(PROGRAM)

