

ABORT program on Fatal Error.

Kavli Institute for Cosmological Physics AT THE UNIVERSITY OF CHICAGO

SNANA Tutorial

R. Kessler Duke Seminar June 18, 2020

From the SNANA Legal Team:

- SIDE EFFECTS include, but are not limited to: confusion, frustration, watery eyes, headaches, weight loss, weight gain, systematics-limited results, incorrect results, denial of tenure.
- Do not drive or operate heavy machinery while using SNANA.

GOOGLE Search: No, not this SNANA

Welcome to the <u>SuperNova ANA</u>lysis software homenage

SNANA contains a light curve fitter and simulation that can be applied to any supernova (SN) model and to any data set. This website provides installation instructions, a user manual, and a software package download area.

And not this obsolete link

It's here on Github: https://github.com/RickKessler/SNANA

RickKessler / SNANA						⊙ Watch ▾ 🏒	다 Star	8	¥ Fork	K 8
<>Code	<> Code ① Issues 2 \$\$ Pull requests 1 ④ Actions Ⅲ Pro			Projects 0	🕮 Wiki 🛛 ! Se	ki 🕛 Security 0 🗠 Insights 🔯 Settings				
Supernova Analysis package Edit Manage topics										
- 659 commits		<mark></mark> የ 16 branches		😚 0 packages	🛇 43 releases		ભર 6 contributors			
Branch: mas	ster 👻 New pu	Create new file	Upload files	Find file	Clone	or downle	oad 🗸			
EickKessler misc Latest commit 8631d18 34 minutes ag										ago
doc	doc misc				34 minutes ago					
src			34 minutes ago							
🖿 util		fix abort message for		34 minutes ago						
🗋 .gitigno	ore	updated gitignore		11 months ago						
	/E.md	SED	13 months ago							
	1E.md									Ø

SNANA

Supernova Analysis package.

Read documentation in /doc.

Outline

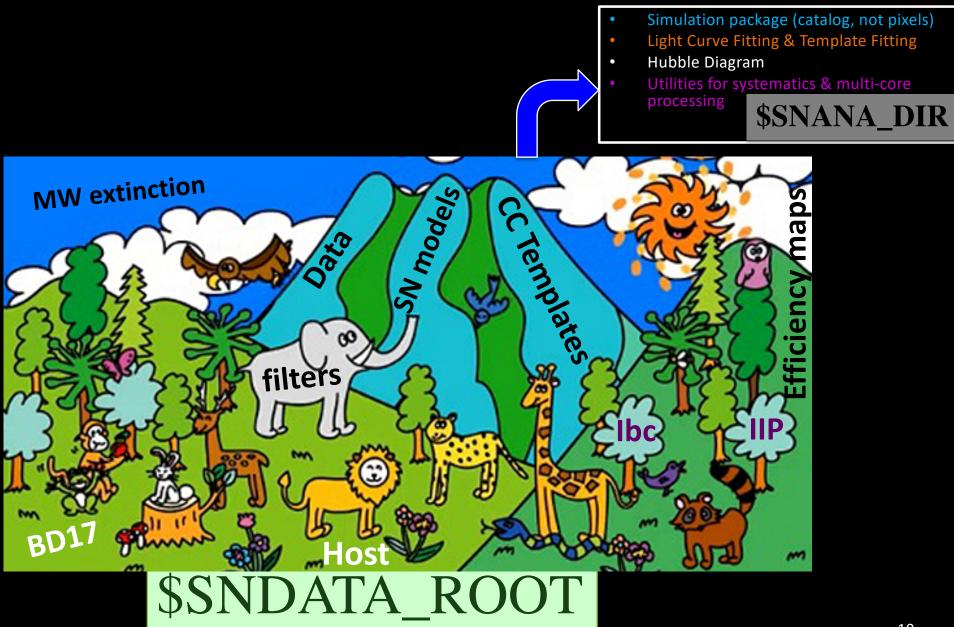
- Intro
- Architecture
- Main programs and features
- Systematics & Multi-Core Jobs
- Pippin Analysis Pipeline (Super Glue)
- Output
- Documentation

Why SNANA

- SNIa-Cosmology Analysis (SDSS, JLA, PS1-Pantheon, DES)
- Forecast future surveys (DES,LSST,WFIRST ...)
- Simulate wide range of transients (e.g., PLAsTiCC classification challenge)
- Quantify sensitivity for rare searches (e.g., KN, ICECUBE-v source)
- Efficiency correction for rate measurements
- Validate diff-imaging pipeline (using fakes)

Few Principles for SNANA

- Science needs drive development
- Stay connected to real data, even if designing a future survey
- Always look for opportunities to try new things, even if it seems like a distraction.
- Minimize memory, process time, file size.


Summary of Ready-to-Run Programs in \$SNANA_DIR

- Simulation package (catalog, not pixels)
- Light Curve Fitting & Template Fitting
- Bias Corrected Hubble diagram using BBC
- Create stat+syst covariance matrix
- Cosmology Fitting (old, simple, fast: better codes elsewhere)
- Utilities for systematics & multi-core processing
- NO Image-Processing Tools

Code Languages

- sim, BBC, wFit: <u>C</u>
- LC fit: <u>C + Fortran</u> (unintended consequence)
- Batch-submit scripts: **Perl** (naive mistake)
- createCov + plot-util + misc: <u>Python</u>

Architecture: Environment

SNANA Architecture: File Sharing

SNANA was implicitly designed to run on a cluster with many users sharing files.

Hey, did you update the filter transmission files ?

SNANA Architecture: File Sharing

SNANA was implicitly designed to run on a cluster with many users sharing files.

\$SNDATA_ROOT contains

- Data
- Simulated output
- Filter transmissions
- Primary SEDs
- Ia & CC spectral templates
- MW extinction map
- SN model parameters
- SIMLIB files
- HOSTLIB files
- Efficiency maps
- Etc . . .

Can run tests with file(s) in your private directory, but goal is to share files with <u>community</u> via \$SNDATA_ROOT

SNANA Architecture: Sharing Proprietary Files

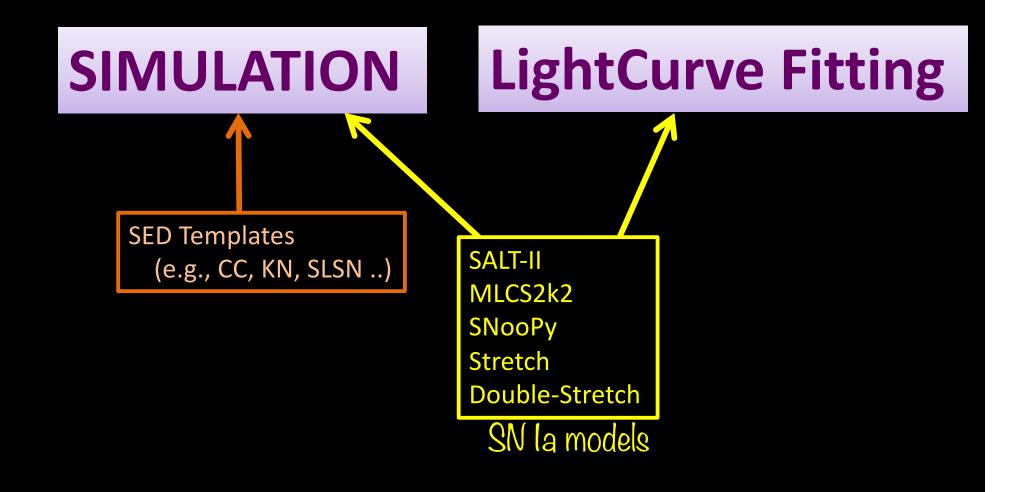
During analysis it is useful to share proprietary SNANA files,

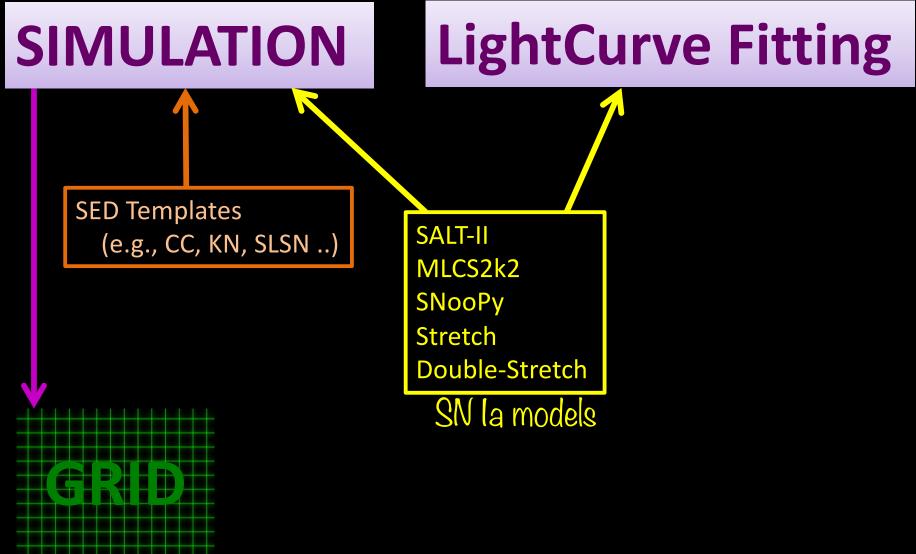
\$DES_ROOT
\$LSST_ROOT
\$WFIRST_ROOT

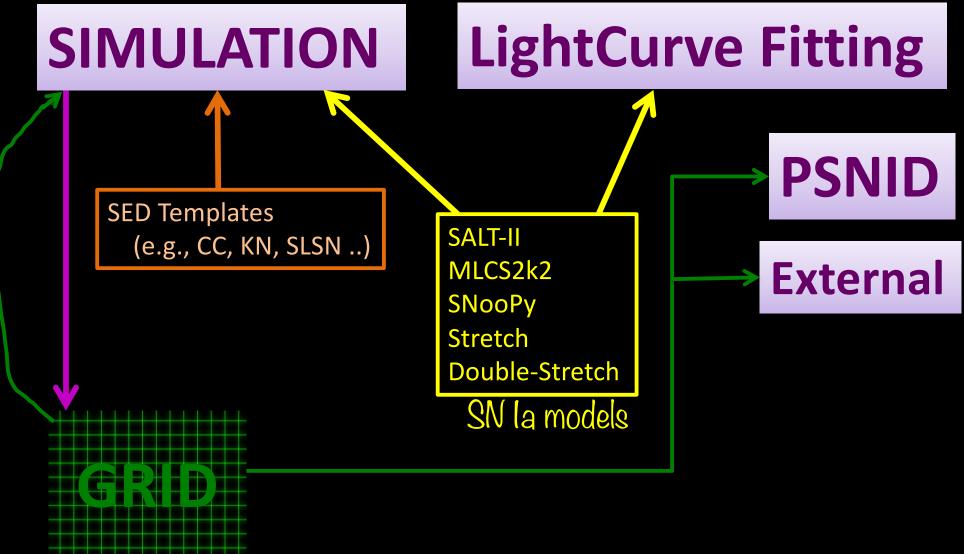
INTERNAL directories are *NOT* public.

ENV can be used as part of any input fileName, e.g., SIMLIB_FILE: \$DES_ROOT/simlibs/DES_DIFFIMG.SIMLIB (ENVs simplify transfer to another compute cluster)

Surveys Investigated on U.Chicago's "Midway" Cluster


DESJLAPS1MDSMTWFIRSTZTFFOUNDATIONLSSTSDSSSNTRAINYSE


- No barriers between project areas
- Easy to switch between projects (no new login)
- Easy to collaborate with others
- Relies honor system to respect proprietary files



LightCurve Fitting

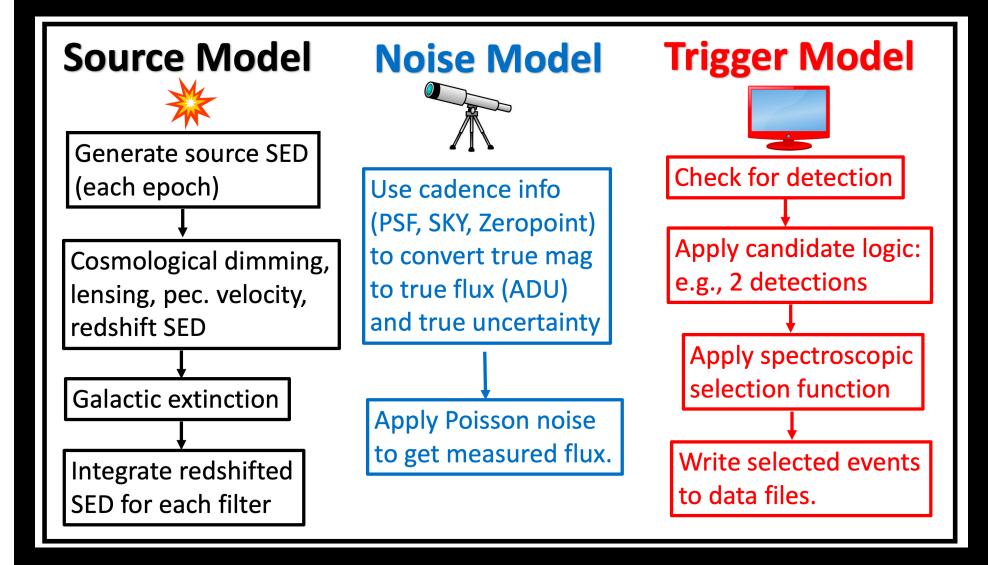
SALT-II MLCS2k2 SNooPy Stretch Double-Stretch SN la models

- Allows using templates constructed from non-SNANA programs
- Any SN model → standard model format for template-fitting programs such as PSNID
- Can be faster (e.g., huge speed-up for SNooPy)

SNANA Simulation

SOURCE MODEL

Explosion Model (e.g., Woosley, Kasen,FLASH)


Empirical model from Data (e.g., SALT2, SED time series ...)

Calibrated light curves and uncertainties

SIM

INSTRUMENTAL MODEL from IMAGES

- Cadence
- PSF
- ZP
- Skynoise
- Non-Poisson noise
- Saturation
- Detect efficiency

Almost 20 different ``maps" are input to the simulation

Host Galaxy Library (HOSTLIB)

- mis-matched host based on min DLR
- SN-host correlations (e.g., brightness vs. mass)
- SN population (color, stretch, dust) dependence on HOST properties (e.g, mass, SFR ...)
- Host photo-z (e.g., from Graham 2018) use as prior in fit for SN photo-z
- Local surface brightness → Poisson & non-Poisson (anomalous) noise.
- Efficiency map of spec-zHOST vs. HOST properties

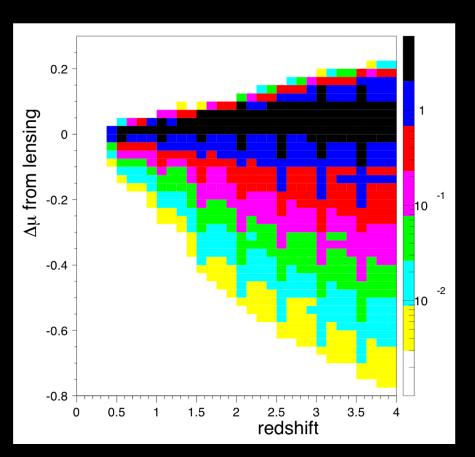
Host Galaxy Library (SN-Host correlations)

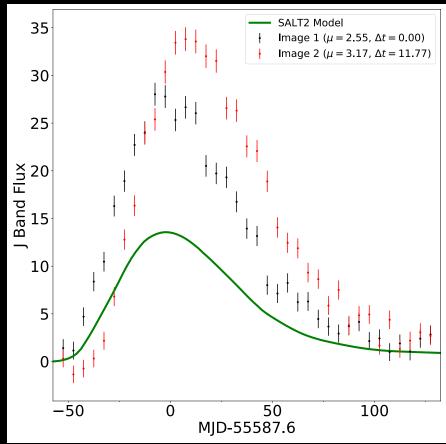
- Given SN properties (color, stretch), choose distribution of host properties or
- Given host properties, choose distributions of SN properties.
 (color, stretch, RV, AV)

Host Galaxy Library (Example HOSTLIB using MICECAT)

VARNAMES: GALID RA_GAL DEC GAL ZTRUE g_obs r_obs i_obs z_obs ABS_MAG_g ABS_MAG_r ABS_MAG_i ABS_MAG_z a0_Sersic b0_Sersic n0_Sersic a_rot LOGMASS LOG_SFR

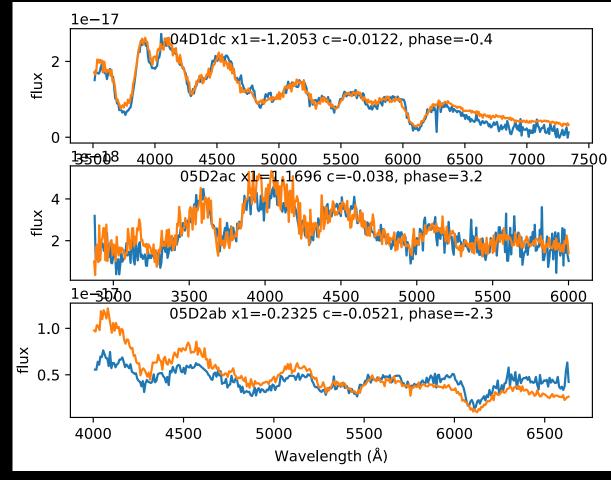
GAL: 28581888 6.32295 25.82068 0.30917 22.47973 21.19873 20.77373 20.56673 -18.71227 -19.31427 -19.55727 -19.76027 0.91923 0.36473 2.0 -162.357 9.89 -10.2


Host Galaxy Library (HOSTLIB)


SNANA code implementation is the easy part ... main burden is on the user to construct suitable HOSTLIB

Simulation of Weak & Strong Lensing

Weak lens magnification map from J.Barreiro, T. Davis (MICECATv1)



Simulating Spectra: SN & Host

- Test SALT2 training with simulated photometry & spectra
 - Impact on spectral calibration
 - Impact of host contamination
 - Impact of spectral wave & phase coverage
- NGRST (WFIRST): forecast host redshift capabilities

Simulating Spectra: SN

---- Real SNIa, SNLS ---- Sim SNIa, SNANA

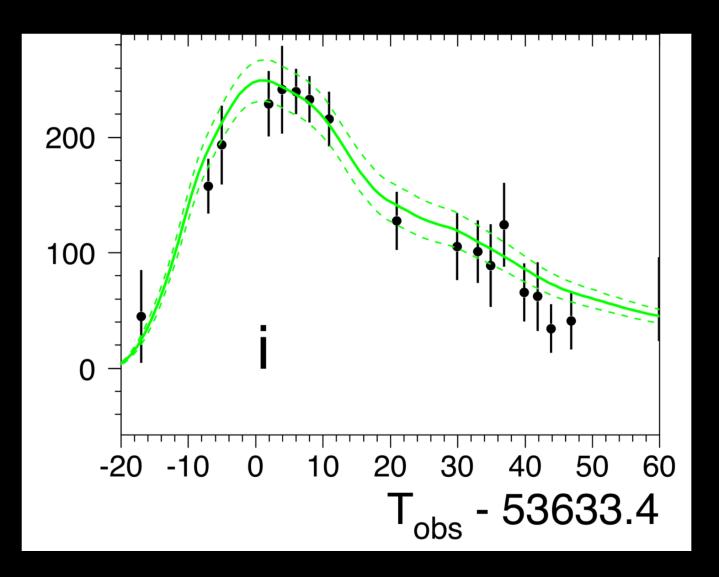
Plot from D.Jones

Simulating Spectra: Host (and reformat option for Marz redshift utility)

- Spectrograph Sim from S.Rodney
- <u>http://samreay.github.io/Marz</u> (by S.Hinton)

SIM CPU Proc-Time

U Chicago Research Computing Center: Sep 2018 for PLAsTiCC

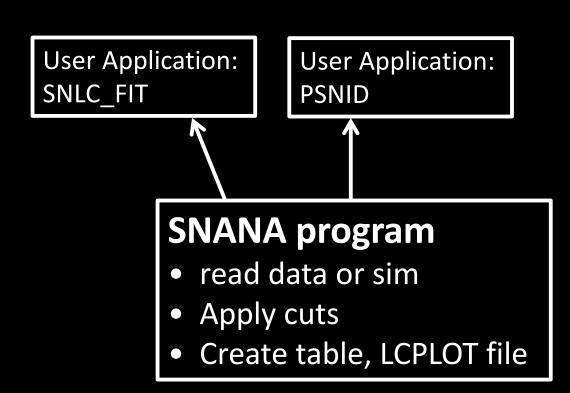

- 117 million light curves generated in 8 hr on 40 cores → 100/sec
- 3.5 million written to data file \rightarrow 3/sec

eed

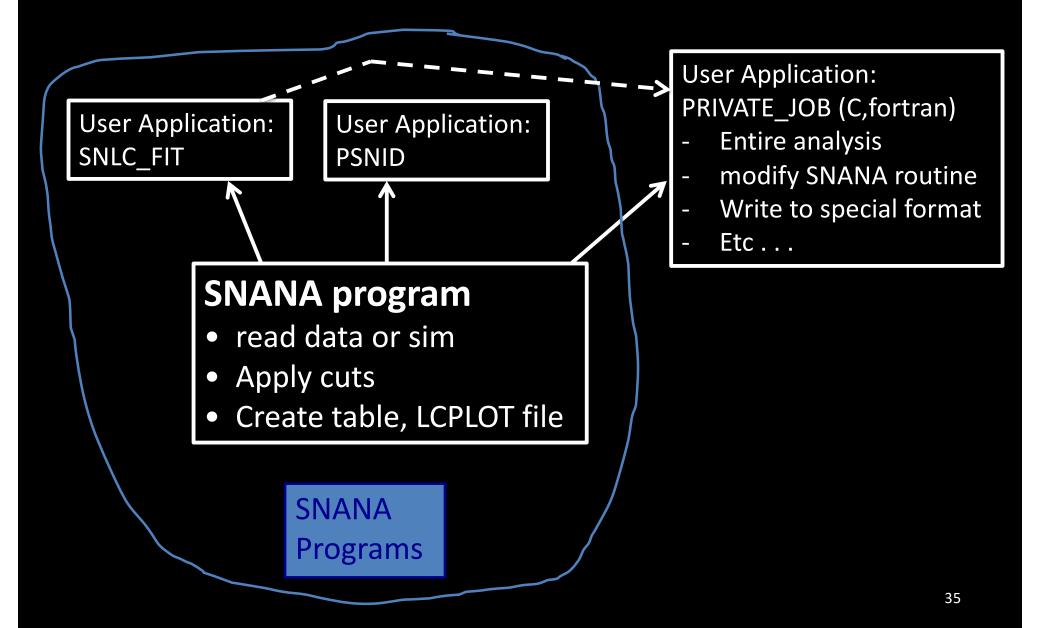
No API for Simulation

- However, without re-compiling can add + new survey, filters, Cadence, HOSTLIB, calibration info
 - + new SED templates
- Supernova Standardization Team (SST) has added ``Build Your Own SED'' model (BYOSED) in python, with C calling python.
- SST Goal: arbitrary complexity in sim data to test SALT2 training.

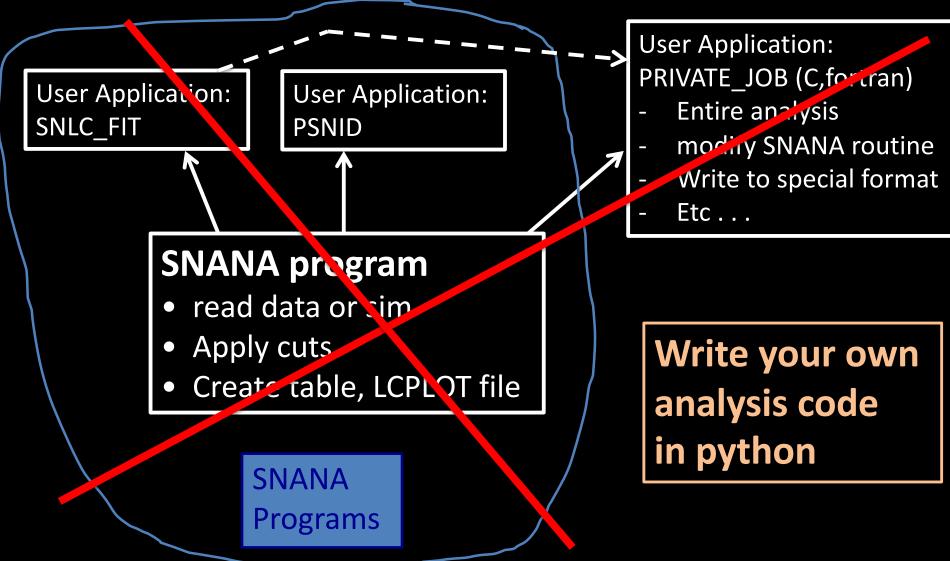
Analysis and Light Curve Fitting



Architecture for Analysis


SNANA program

- read data or sim
- Apply cuts
- Create table, LCPLOT file


Interface for Analysis

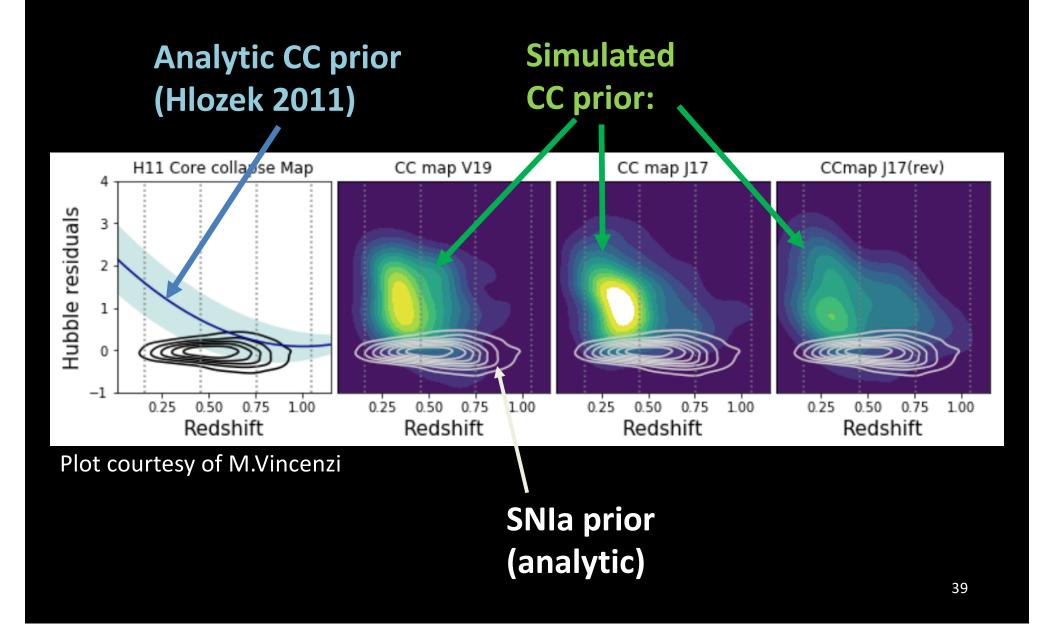
Interface for Analysis

Interface for Analysis

Misc Analysis Options

- ``CUTWIN" options to apply selection requirements
- Systematic variations (e.g., calibration, MW-extinct, bands..)
- Override data variables with supplement file (e.g., try out different pec. velocities)
- Apply fluxErr map to scale uncertainties

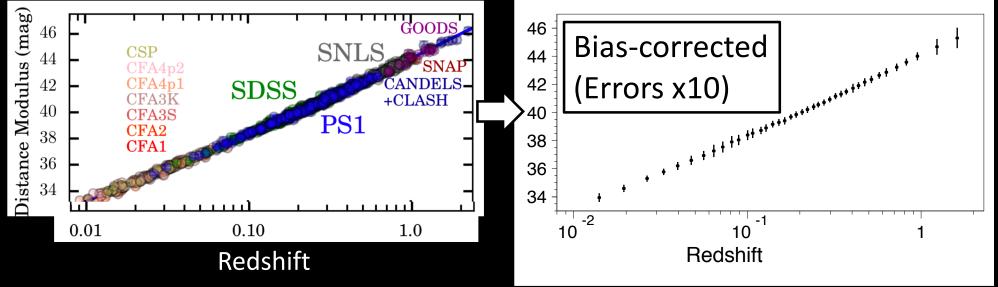
BEAMS with Bias Correction (BBC)


SALT2 fit params from:

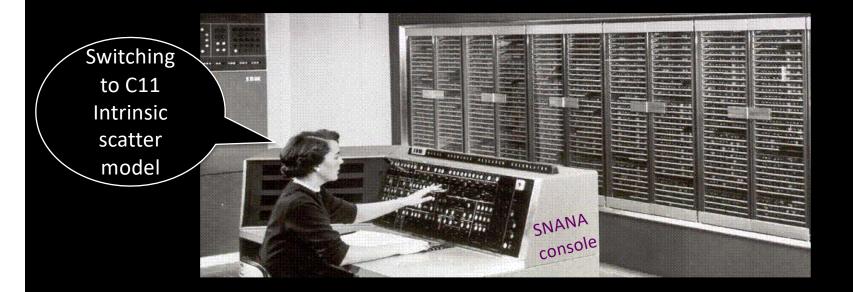
- Real data
- Simulated data (Ia)
- Simulated data (CC)

BBC fit program

z-binned Hubble diagram corrected for bias from selection and CC contam.

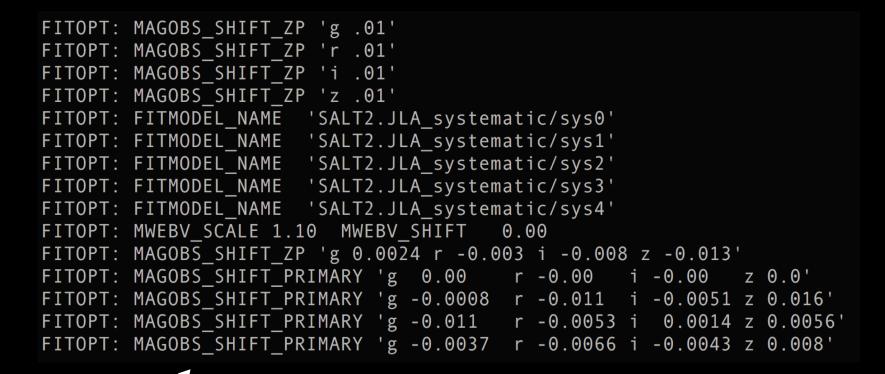

BEAMS with Bias Correction (BBC)

BBC Output


(input to Cosmology fit)

Pantheon Sample (Scolnic 2018)

- Precision analyses require many iterations of analysis, each with a small variation in parameters or method.
- SNANA has tools to implement multi-iteration analyses using multi-core platforms.


(e.g., Fermilab, NERSC, Argonne, Midway, Folio . . .)

- Sim & Analysis codes read input instructions from a text file.
- Specify variations with command-line overrides to avoid more input files.
- SNANA Scripts use command-line override feature to launch multiple jobs in batch system.

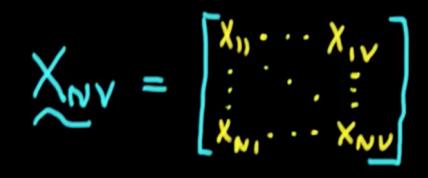
sim_SNmix.pl Launch multiple SIM(Ia+CC) jobs **split_and_fit.pl** Launch multiple lightcurve fit jobs **SALT2mu_fit.pl** Launch multiple BBC fit jobs

	<pre># vary intrinsic scatter models GENVERSION: JLA_SDSS3year_G10smear GENOPT: GENMAG_SMEAR_MODELNAME G10 GENOPT: SEARCHEFF_SPEC_FILE SPECEFF_SDSS/SEARCHEFF_SPEC_SDSS_G10smear.DAT</pre>
Example:	GENVERSION: JLA_SDSS3year_COHsmear GENOPT: GENMAG_SMEAR 0.13 GENMAG_SMEAR_MODELNAME NONE GENOPT: SEARCHEFF_SPEC_FILE SPECEFF_SDSS/SEARCHEFF_SPEC_SDSS_COHsmear.DAT
Subset of sim jobs for JLA	GENVERSION: JLA_SDSS3year_C11-0smear GENOPT: GENMAG_SMEAR_MODELNAME C11_0 GENOPT: SEARCHEFF_SPEC_FILE SPECEFF_SDSS/SEARCHEFF_SPEC_SDSS_C11-0smear.DAT
systematics. Each job →	GENVERSION: JLA_SDSS3year_C11-1smear GENOPT: GENMAG_SMEAR_MODELNAME C11_1 GENOPT: SEARCHEFF_SPEC_FILE SPECEFF_SDSS/SEARCHEFF_SPEC_SDSS_C11-1smear.DAT
separate core	GENVERSION: JLA_SDSS3year_C11-2smear GENOPT: GENMAG_SMEAR_MODELNAME C11_2 GENOPT: SEARCHEFF_SPEC_FILE SPECEFF_SDSS/SEARCHEFF_SPEC_SDSS_C11-2smear.DAT
	GENVERSION: JLA_SDSS3year_NOsmear GENOPT: GENMAG_SMEAR_MODELNAME NONE GENOPT: SEARCHEFF_SPEC_FILE SPECEFF_SDSS/SEARCHEFF_SPEC_SDSS_NOsmear.DAT
sim_SN Launch m SIM(la+C	ultiple

Example: Subset of fit jobs for PS1 systematics

split_and_fit.pl Launch multiple lightcurve fit jobs

define Light curve fit output from split_and_fit
INPDIR+: \$DES_ROOT/analysis/DES_LCFITS
INPDIR+: \$DES_ROOT/analysis/LOWZ_LCFITS
INPDIR+: \$DES_ROOT/analysis/FOUND_LCFITS


```
# define BBC variations
MUOPT: simfile_biascor=DES_variant1.FITRES,LOWZ_variant1.FITRES
MUOPT: simfile_biascor=DES_variant2.FITRES,LOWZ_variant2.FITRES
MUOPT: nbin_logmass=2 nzbin=16
MUOPT: CUTWIN x1 -2 2
etc ...
```

SALT2mu_fit.pl Launch multiple BBC fit jobs

Systematics Summary

- Systematics are expressed via
 - GENOPTs (sim biasCor variations)
 - FITOPTs (LC fit variations)
 - MUOPTs (BBC variations)

 Creating and testing these ~100 variations is a major part of SNIa-cosmology analysis. Stat + Syst Covariance Matrix (createCov.py)

- After LC fit and BBC, create cov(stat+syst) for CosmoMC (cosmology fit program)
- Includes systematics from fit options (FITOPT) and BBC options (MUOPT)
- Allows arbitrary error-scaling for each systematic, or each class of systematic.
- Internal bookkeeping for ~100 systematics.

SNANA Output

SIMULATION Output

Data Files

- FITS format for large jobs or
- ASCII format for testing (1 file per SN)

ascii format for large sim jobs !

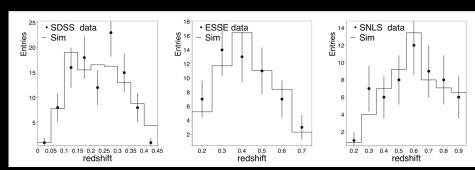
SIMULATION Output

Data Files

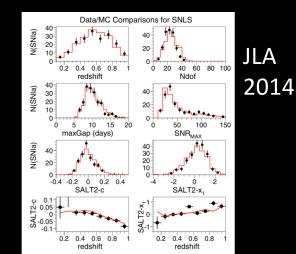
- FITS format for large jobs or
- ASCII format for testing (1 file per SN)

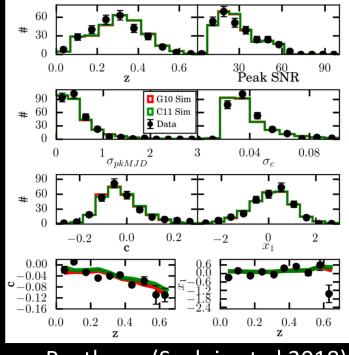
I said NEVER use ascii format for large sim jobs !

ASCII Summary File

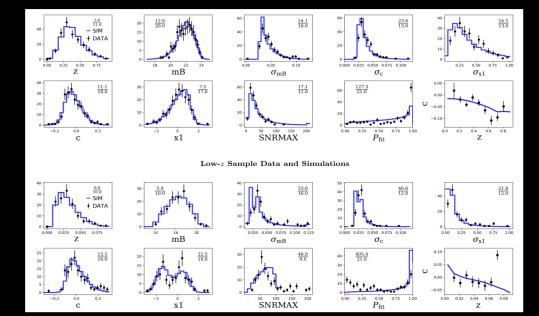

- 1 row per accepted SN or
- 1 row per generated SN (for efficiency)

SIMULATION Output


Never Trust Simulation Output Always check data/MC distributions (redshift, fit params, SNR, etc . . .)


> Y'all don't have to worry none; I generated them simulations myself. Who took my beer ?

Simulation Output vs. Data



SDSS (Kessler et al 2009)



DES 3-Year (Brout et al 2019)

Simulation Output vs. Data

With *photometric-ID*, Sim(la+CC) should match observed HR

PS1 – Jones et al., 2018

Analysis Output \rightarrow SNTABLEs

- SNANA table before fit (1 row per SN)
- FITRES table after cuts+fit (1 row per SN)
- LCPLOT table with light curve & best-fit curve

Analysis Output \rightarrow SNTABLEs

- SNANA table before fit (1 row per SN)
- FITRES table after fit (1 row per SN)
- LCPLOT table with light curve & best-fit curve

Formats:

- TEXT (1 file per table)
- HBOOK (all tables \rightarrow 1 file)
- ROOT (all tables \rightarrow 1 file)
- Easier to install SNANA without HBOOK or ROOT (but will miss most output variables from analysis)
- New format can be added if interface routines are provided

Analysis Output \rightarrow SNTABLEs

- SNANA table before fit (1 row per SN)
- FITRES table after fit (1 row per SN)
- ALL variables stored in HBOOK & ROOT format (compared to TEXT, more efficient to read & write)
- Subset stored in **TEXT** for input to cosmology fit
- Utility to append **TEXT** file (from HBOOK or ROOT)
- See "sntable_dump" to view, dump, append tables
- Slowly moving away **TEXT** (except for debug)

Putting it all Together in a Photometric-SNIa-Cosmology Analysis

SNANA

- Simulate SNIa biasCor
- Simulate SNCC training
- Light curve fitting (data+sim)
- Beams with Bias Corr (BBC)
- Create COV(stat+syst)

Outside SNANA

- Classification
- Cosmology fit

Putting it all Together in a Photometric-SNIa-Cosmology Analysis

SNANA

- Simulate SNIa biasCor
- Simulate SNCC training
- Light curve fitting (data+sim)
- Beams with Bias Corr (BBC)
- Create COV(stat+syst)

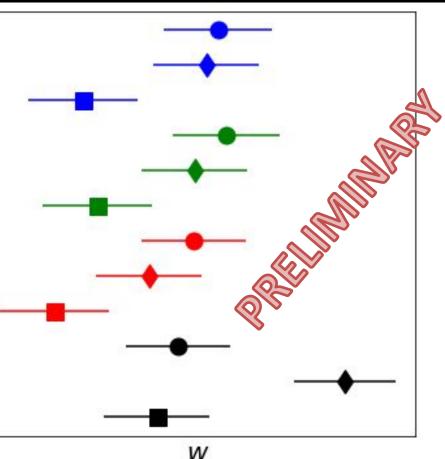
Outside SNANA

- Classification
- Cosmology fit

``Pippin'' glues it all together: <u>https://github.com/Samreay/Pippin</u>

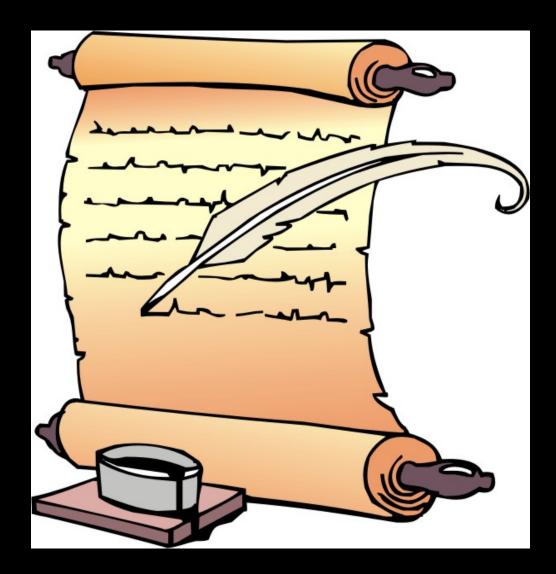
Putting it all Together in a Photometric-SNIa-Cosmology Analysis

SNN: Moller and Boissiere, arXiv:1901.06384 SNIRF: Dai et al, arXiv:1701.05689 Outside SNANA Classification • Cosmology fit

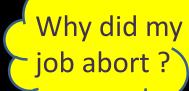

CosmoMC: Lewis and Bridle, arXiv:astro-ph/0205436

``Pippin'' glues it all together: <u>https://github.com/Samreay/Pippin</u>

Power of Pippin: Illustration with Simulated DES+LOWZ


Classifier x simCC(training) x simCC(BBC prior)

SNN trained on V19; CCprior map:V19 -SNN trained on V19; CCprior map:J17 -SNN trained on V19; CCprior map:H11 -SNN trained on J17; CCprior map:V19 -SNN trained on J17; CCprior map:J17 -SNN trained on J17; CCprior map:H11 -SNN trained on DESCC; CCprior map:V19 -SNN trained on DESCC; CCprior map:J17 -SNN trained on DESCC; CCprior map:J17 -Perfect Classifier; CCprior map:V19 -Perfect Classifier; CCprior map:J17 -Perfect Classifier; CCprior map:J17 -


Plot from M. Vincenzi & S.Hinton

SNANA Documentation

SNANA Documentation

 Learning SNANA is like learning to fly a plane; forget the manual, you need experienced person in the cockpit with you.

LC: 2000 ION: CODETEST_SALT2_SDSS_TEXT_XXX C: RANDOM SALT2 GUN10

E_INCLUDE: \$SNANA_TESTS/inputs/SIMGEN_INCLUDE_SALT2.input

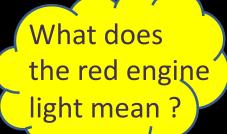
3_Ia: 120 106 rF: 50000

kCOR_FILE: \$SNDATA_R00T/kcor/SDSS/SDSS_Doi2010/kcor_SDS5_Bessell90_BD17.fits gennag_SMeAR_NODELNAME: G10

SEARCHEFF_PIPELINE_LOGIC_FILE: \$SNDATA_ROOT/models/searcheff/SEARCHEFF_PIPELINE_LOGIC.D SEARCHEFF_PIPELINE_EFF_FILE: \$SNDATA_ROOT/models/searcheff/SEARCHEFF_PIPELINE_DSS.DA SEARCHEFF_SEC_FILE: \$SNDATA_ROOT/models/searcheff/SEARCHEFF_seC_SSS.DAT SEARCHEFF_zHOST_FILE: \$SNDATA_ROOT/models/searcheff/SEARCHEFF_zHOST_SDS.DAT

Prtr_StarkuterF_UPI: 3
selection criteria for generation
GENFILTERS: ugr1z
GENVANCE_NA: -59.0 deg
GENVANCE_PEARUJD: 1.258 41.258 deg
GENVANCE_PEARUJD: 1.325.0 d5865.0
GENVANCE_PEARUJD: 1.0

GENRANGE_REDSHIFT: 0.02 0.45 GENSIGMA_REDSHIFT: 0.0012

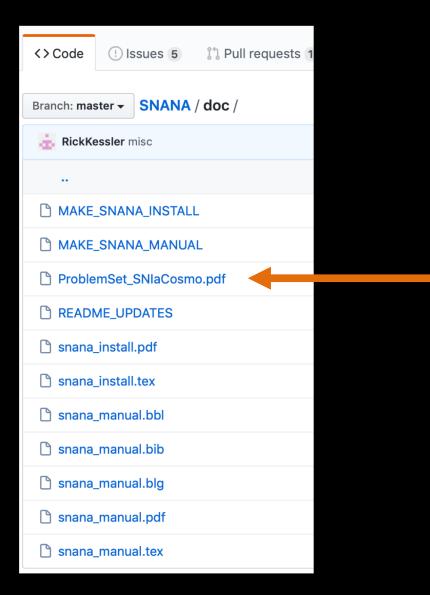

SENRANGE_TREST: -20.0 80.0 # rest epoch relative to peak (days)

smear flags: 0=off, 1=on SMEARFLAC_FLUX: 1 # photo-stat smearing of signal, sky, etc ... SMEARFLAC_ERROPT: 1 # smear zero-point with zptsig

DZ: POWERLAW 2.6E-5 1.5 # SN rate ~ (1+z)^1.5

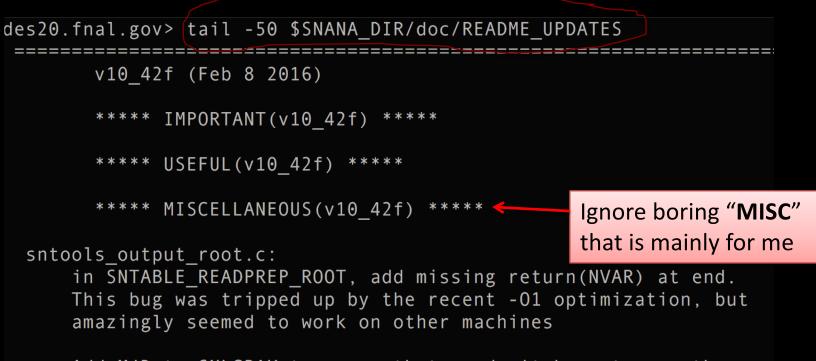
MAT_MASK: 2 ! 2=terse/text 32=FITS 1=verbose

N_DUMP: 14 CID GENTYPE SNTYPE GENZ DLMAG S2x1 S2 SNRMAX SNRMAX2 SNRMAX3 SNRMAX g SNRMAX r SNRMAX i SNRMAX z



Manual

- 180 page manual with no interface except 'preview'
- Reading manual not so helpful, but recommend skimming table-of-contents



For Beginners and Profs looking for Homework Problems

Tracking Changes

Add MJD to SNLCPAK tree, so that we don't have to use the clumsy method pf MJD = PEAKMJD+TOBS.

Tracking Changes

v10_42g (Feb 19 2016)

***** IMPORTANT(v10_42g) ***** <

SALT2mu.c : major refactor and update to implement BEAMS-like fit using simulation to define the CC prior. See new inputs: simfile_ccprior and varname_p1a You should read IMPORTANT & USEFUL updates

***** USEFUL(v10 42g) ***** 🔶

New plotting function \$SNANA_DIR/util/ovdatamc.py (by D.Jones) operates on ascii FITRES files from data and sim. Overlays simulation separately for SNIa and SNCC.

snana.car: new SNLCINP namelist SIMLIB_OUT = 'bla.simlib'
will create simlib file from data.

***** MISCELLANEOUS(v10 42g) *****

snlc_sim.c, sntools_host.c: New sim-input key HOSTLIB_GALID_PRIORITY: 0 500000 to give priority to GALID range.

Fix minor bug in gen_AV() [found by D.Jones]

split_and_fit.pl : new key SALT2mu_SIMVERSION to pass simFile to SALT2mu program (for bias cor and CCprior).

Miscellaneous

- Report bugs ASAP as Github issue; don't just hack a private fix for yourself.
- Report compilation warnings.
- Think about how you can contribute to SNANA.
- In papers, SNANA citation is not enough; also cite source of models, template data, galaxy catalogs, etc.

Conclusion

From the SNANA Legal Team:

- SIDE EFFECTS include, but are not limited to: confusion, frustration, watery eyes, headaches, weight loss, weight gain, systematics-limited results, incorrect results, denial of tenure.
- Do not drive or operate heavy machinery while using SNANA.